会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 5. 发明公开
    • ANOMALY DETECTION AND DIAGNOSTIC METHOD, ANOMALY DETECTION AND DIAGNOSTIC SYSTEM, AND ANOMALY DETECTION AND DIAGNOSTIC PROGRAM
    • FOR条件检测和诊断,DEVICE METHODS FOR检测条件,诊断和PROGRAM FOR条件检测和诊断
    • EP2477086A1
    • 2012-07-18
    • EP10813558.3
    • 2010-06-16
    • Hitachi, Ltd.
    • MAEDA ShunjiSHIBUYA Hisae
    • G05B23/02G06Q50/00
    • G05B23/0227G06K9/00536G06K9/6251
    • Provided is an anomaly detection method and system capable of constructing determination condition rules of anomaly detection from case-based anomaly detection by way of multivariate analysis of a multi-dimensional sensor signal, applying the rules to design-based anomaly detection of individual sensor signals, and also appropriately executing setting and control of threshold values for highly sensitive, early, and clearly visible detection of anomalies. Anomaly detection on the basis of a case base by way of multivariate analysis controls design-based anomaly detection. That is to say, (1) anomaly detection on the basis of a case base performs selection of sensor signals and anomaly detection according to various types of anomalies. Specifically, anomaly detection (characteristic conversion), evaluation of level of effect of each signal, construction of determination conditions (rules), and display and selection of sensor signals corresponding to the anomaly are performed. (2) Design-based anomaly detection for individual sensor signals performs anomaly detection after the above have been performed. Specifically, setting and control of thresholds, display of thresholds, and anomaly detection and display are performed.
    • 本发明提供一种异常检测方法,并且能够通过一个多维传感器信号的多变量分析的方式,从基于案例的异常检测构建异常检测的判定条件的规则,将规则应用于的系统设计为基础的异常检测各个传感器信号的, 等适当地执行阈值的设定和控制,高度敏感的,早期和清晰可见的异常的检测。 通过多变量分析的方式的情况下,基体的基础上,异常检测控制设计为基础的异常检测。 也就是说,(1)的情况下,基体的基础上,异常检测执行传感器信号和异常检测gemäß的选择各种类型的异常。 具体地,异常检测(特性转换),每个信号的效果水平评价,进行的确定条件(规则),并显示和传感器信号对应于所述异常的选择结构。 (2)基于设计的异常检测为单独的传感器信号进行上述已被执行之后的异常检测。 具体而言,进行设定和阈值的控制,阈值的显示,以及异常检测和显示。
    • 6. 发明公开
    • VIDEO SEGMENTATION
    • VIDEOSEGMENTIERUNG
    • EP2401686A1
    • 2012-01-04
    • EP10706317.4
    • 2010-02-26
    • British Telecommunications Public Limited Company
    • XU, Li-QunANJULAN, Arasanathan
    • G06F17/30
    • G06F17/30843G06K9/00765G06K9/6224G06K9/6251
    • A method of segmenting a sequence of video images according to scene activity, the method comprising: defining a first series of nodes in a first multi-dimensional space, each node corresponding to an image of the sequence of video images; defining a transformation function that maps each of the first series of nodes to a corresponding node in a second multi-dimensional space having a lower dimensionality than the first multi-dimensional space; applying said transformation function to each of the first series of nodes to define a second series of respective nodes in the second multi-dimensional space; applying a data clustering algorithm to the second series of nodes to identify clusters of nodes within the second multi-dimensional space, the data clustering algorithm being constrained by a measure of feature distance between a pair of clusters of nodes and a measure of temporal distance between the pair of clusters of nodes; determining a representative image from each cluster of nodes and plotting each representative image with respect to a measure of the elapsed time of the sequence of video images to form an scene density curve indicating the underlying scene change activities; and segmenting the sequence of video images in accordance with local minima and/or maxima of the scene density curve.
    • 一种根据场景活动分割视频图像序列的方法,所述方法包括:在第一多维空间中定义第一系列节点,每个节点对应于视频图像序列的图像; 定义将所述第一系列节点中的每一个映射到具有比所述第一多维空间小的维度的第二多维空间中的对应节点的变换函数; 将所述变换函数应用于所述第一系列节点中的每一个以限定所述第二多维空间中的相应节点的第二系列; 将数据聚类算法应用于第二系列节点以识别第二多维空间内的节点簇,所述数据聚类算法受到一对节点簇之间的特征距离的测量以及时间距离的度量 一对节点簇; 确定来自每个节点簇的代表图像,并针对所述视频图像序列的经过时间的度量来绘制每个代表图像,以形成指示下一个场景变化活动的场景desnity曲线; 以及根据场景极化曲线的局部最小值和/或最大值来分割视频图像的序列。