会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明公开
    • EJECTOR REFRIGERATION CIRCUIT
    • EP3295096A1
    • 2018-03-21
    • EP15721711
    • 2015-05-12
    • CARRIER CORP
    • HELLMANN SASCHAKREN CHRISTOPH
    • F25B41/00F25B1/10F25B5/00F25B41/04
    • F25B41/00F25B1/10F25B5/00F25B41/043F25B2341/0012F25B2341/0015F25B2700/195F25B2700/197F25B2700/2109F25B2700/21163F25B2700/21175
    • An ejector refrigeration circuit (1) comprises a high pressure ejector circuit (3) comprising in the direction of flow of a circulating refrigerant: a heat rejecting heat exchanger/gas cooler (4) having an inlet side (4a) and an outlet side (4b); at least two variable ejectors (6, 7) with different capacities connected in parallel, each of the variable ejectors (6, 7) comprising a primary high pressure input port (6a, 7a), a secondary low pressure input port (6b, 7b) and an output port (6c, 7c); wherein the primary high pressure input ports (6a, 7a) of the at least two variable ejectors (6, 7) are fluidly connected to the outlet side (4b) of the heat rejecting heat exchanger/gas cooler (4); a receiver (8), having an inlet (8a), a liquid outlet (8c), and a gas outlet (8b), wherein the inlet (8a) is fluidly connected to the output ports (6c, 7c) of the at least two variable ejectors (6, 7); at least one compressor (2a, 2b, 2c) having an inlet side (21a, 21 b, 21c) and an outlet side (22a, 22b, 22c), the inlet side (21a, 21 b, 21c) of the at least one compressor (2a, 2b, 2c) being fluidly connected to the gas outlet (8b) of the receiver (8), and the outlet side (22a, 22b, 22c) of the at least one compressor (2a, 2b, 2c) being fluidly connected to the inlet side (4a) of the heat rejecting heat exchanger/gas cooler (4). The ejector refrigeration circuit (1 ) further comprises a refrigerating evaporator flowpath (5) comprising in the direction of flow of the circulating refrigerant: at least one refrigeration expansion device (10) having an inlet side (10a), fluidly connected to the liquid outlet (8c) of the receiver (8), and an outlet side (7b); at least one refrigeration evaporator (12) fluidly connected between the outlet side (10b) of the at least one refrigeration expansion device (10) and the secondary low pressure input ports (6b, 7b) of the at least two variable ejectors (6, 7).
    • 3. 发明公开
    • METHOD FOR CONTROLLING HEAT PUMP OPERATION
    • 控制热泵运行的方法
    • EP3239626A1
    • 2017-11-01
    • EP16461515.5
    • 2016-04-27
    • PLUM spólka z ograniczona odpowiedzialnoscia
    • Szumski, Michal
    • F25B30/02G05B13/02G05B17/02
    • G05B13/027F25B49/02F25B2500/19F25B2600/0251F25B2600/2513F25B2700/02F25B2700/1933F25B2700/197F25B2700/2106F25B2700/21151F25B2700/21171F25B2700/21174G05B17/02
    • The invention relates to a method for controlling the heat pump, and in particular to a method for controlling the expansion valve for adjusting the superheating of the working medium, wherein the dew point (ps) is determined by means of a unidirectional neural network; a method for controlling the process of thawing the exchanger of the lower heat source, wherein based on the measurement and analysis of the temperature difference upstream and downstream of the exchanger of the lower source of the heat pump, of air humidity and instantaneous power of the compressor, the value of energy obtained from the lower source of the heat pump in a characteristic period of time is determined, and this value is compared to adequate historical data, wherein the compressor in the thawing mode is activated only when the current value of energy is lower than the set percentage of the energy value taken from historical data; and a method for controlling the switching on of the compressor, wherein coefficient of heat demand Qh of the heated building is dynamically determined based on the difference between the set and current values of the heating circuit supply and based on measurements of temperature and humidity of outside air. The method according to the invention allows an increase in the efficiency of the heat pump through accurate adjustment of the superheating of the cooling medium upstream of the evaporator, optimisation of the operation periods of the compressor, reduction of defrosting operations of the exchanger of the lower source, heat accumulation in peak sources and minimisation of the need to use additional heat sources to ensure operation of the compressor within the operating envelope.
    • 本发明涉及一种用于控制热泵的方法,并且尤其涉及一种用于调节工作介质的过热的膨胀阀的控制方法,其中露点(ps)通过单向神经网络来确定; 一种用于控制解冻下部热源的交换器的过程的方法,其中基于对热泵的下部源的交换器的上游和下游的温度差的测量和分析,对空气湿度和瞬时功率 压缩机中,确定在特定时间段内从热泵的下部源获得的能量的值,并且将该值与充分的历史数据进行比较,其中仅在当前的能量值时激活解冻模式中的压缩机 低于历史数据中能量值的设定百分比; 以及一种用于控制压缩机的接通的方法,其中加热建筑物的热需求系数Qh基于加热回路供应的设定值和电流值之间的差值并且基于外部的温度和湿度的测量而动态地确定 空气。 根据本发明的方法允许通过精确调节蒸发器上游的冷却介质的过热,优化压缩机的运行周期,减少下部交换器的除霜操作来提高热泵的效率 来源,峰值热量积聚以及最小化使用额外热源的需求,以确保压缩机在运行范围内运行。
    • 6. 发明公开
    • AIR CONDITIONING SYSTEM IN PARTICULAR FOR ELECTRIC VEHICLE APPLICATIONS
    • 空调系统特别适用于电动车辆应用
    • EP3173267A1
    • 2017-05-31
    • EP16200602.7
    • 2016-11-24
    • Iveco France S.A.
    • CODRON, StephaneTHOMAS, Romain
    • B60H1/00F25B41/04B60H1/32
    • F25B41/043B60H1/00392B60H1/00907B60H1/321B60H2001/00928B60H2001/3252B60H2001/3255F25B2339/047F25B2600/2515F25B2700/197
    • Air conditioning system, in particular for electric vehicle applications, defined by a closed circuit where coolant fluid circulates, the circuit comprising a first heat exchanger (evaporator) intended to be installed in the external environment, a second heat exchanger (condenser) intended to be installed in room or vehicle coach, a compressor arranged between said first and second heat exchangers and a lamination valve (LV) arranged symmetrically to the compressor between said second and first heat exchangers, wherein the circuit comprises a controllable valve (CV) arranged between said first heat exchanger (evaporator) and said compressor in order to maintain a fluid pressure within said first heat exchanger above a predetermined minimum threshold pressure, when said first heat exchanger works as an evaporator (heat pump mode).
    • 空调系统,尤其是用于电动车辆应用的空调系统,其由冷却液循环的闭合回路限定,所述回路包括旨在安装在外部环境中的第一热交换器(蒸发器),第二热交换器(冷凝器) 安装在房间或车辆中的压缩机,布置在所述第一和第二热交换器之间的压缩机,以及与所述第二和第一热交换器之间的压缩机对称布置的叠片阀(LV),其中所述回路包括布置在所述第一和第二热交换器之间的可控阀(CV) 第一热交换器(蒸发器)和所述压缩机,以便当所述第一热交换器用作蒸发器(热泵模式)时,将所述第一热交换器内的流体压力保持在预定的最小阈值压力以上。
    • 8. 发明公开
    • Method and apparatus for evaluating the energy efficiency of a refrigeration machine and/or heat pump
    • 方法和装置用于评估的冷冻机和/或热泵的能量效率
    • EP2998667A1
    • 2016-03-23
    • EP14003226.9
    • 2014-09-17
    • Hochschule Biberach
    • Becker, MartinKöberle, Thomas
    • F25B49/00F25B49/02
    • F25B49/005F25B49/02F25B2341/0653F25B2500/19F25B2700/191F25B2700/193F25B2700/195F25B2700/197F25B2700/21175Y02B30/72
    • In a method for evaluating the energy efficiency of a refrigeration machine (1; 2) and/or a heat pump (3; 4), wherein a working fluid of the refrigeration machine (1; 2) and/or heat pump is running through an expansion valve (40; 40A, 40B, 40C) at one point of a thermodynamic cycle, at different positions of the thermodynamic cycle, at least one thermodynamic parameter ( T entrance , p entrance , p exit , T superheat , p superheat , Tcompressor, p compressor ) of the working fluid is detected. The mass flow ( ṁ F ) of the working fluid is determined using a classification (m) of the opening of the expansion valve (40; 40A, 40B, 40C) and some of the detected thermodynamic parameters ( T entrance , p entrance , p exit ) of the working fluid. A cooling power and/or a heating power ( Q̇ ) of the refrigeration machine (1; 2) and/or heat pump (3; 4) is determined as a function of the mass flow ( ṁ F ) of the working fluid. The energy efficiency of the refrigeration machine and/or heat pump (3; 4) is evaluated by comparing the cooling power and/or heating power (Q) to an electrical power (P el ) used to power the refrigeration machine and/or heat pump.
    • 在用于评价的制冷机器的能量效率的方法(1,2)和/或热泵(3; 4),worin制冷机的工作流体(1,2)和/或热泵,通过运行 上膨胀阀(40; 40A,40B,40C)在热力学循环中的一个点,在热力循环的不同位置,至少一个热力学参数(T入口,对入口,对出口,T过热,对过热,Tcompressor 时,工作流体的对压缩机)被检测到。 和一些所检测的热力学参数(T入口,对入口,P;工作流体的质量流量(米F)是使用膨胀阀(40A,40B,40C 40)的开口的分类(米)的确定性开采 工作流体的出口)。 冷却功率和/或冷冻机的加热功率(Q)(1; 2)和/或热泵(3; 4)被确定为工作流体的质量流量(米F)的函数。 制冷机器和/或热泵的能量效率(3; 4)通过在电功率(P EL)的冷却功率和/或热功率(Q)进行比较来评估用于将制冷机和/或热动力 泵。
    • 10. 发明公开
    • HEAT PUMP AND AIR CONDITIONER OR WATER HEATER HAVING THE SAME
    • 吉尔吉斯斯坦吉尔吉斯斯坦法兰克福德堡垒
    • EP2980497A1
    • 2016-02-03
    • EP15180055.4
    • 2008-01-21
    • Mitsubishi Electric Corporation
    • HAMADA, MamoruYAMASHITA, Kouji
    • F24F11/02F25B47/00F25D21/00F24F11/00F25B47/02
    • F25B47/025F24F11/42F24F2140/20F25B2500/19F25B2600/23F25B2700/11F25B2700/171F25B2700/197F25B2700/2117F25B2700/21172F25D21/006
    • A heat pump that can accurately detect a frost formation state on an evaporator without being affected by changes in an indoor environment and changes in a compressor frequency, and an air conditioner or water heater on which the heat pump is mounted are provided.
      In the heat pump having a refrigerant circuit in which a compressor 3, an indoor heat exchanger 8 (condenser), an expansion valve 5, and an outdoor heat exchanger 6 (evaporator) are sequentially connected, evaporator refrigerant saturation temperature detecting means 10 for detecting an evaporation temperature Te of the outdoor heat exchanger 6, evaporator sucked air temperature detecting means 11 for detecting an evaporator sucked air temperature Ta of the outdoor heat exchanger 6, compressor frequency detecting means 12 for detecting a compressor frequency f of the compressor 3, and frost formation state detecting means 103 for detecting a frost formation state on the outdoor heat exchanger 6 are provided, and the frost formation state detecting means 103 detects a drop in heat exchange performance caused by a frost formation on the outdoor heat exchanger 6 on the basis of a characteristic amount T1, which is a calculation value obtained by dividing a difference between the evaporator sucked air temperature Ta and the evaporation temperature Te by a compressor frequency f.
    • 提供一种能够精确地检测蒸发器上的霜冻状态而不受室内环境变化和压缩机频率变化影响的热泵,以及安装有热泵的空调或热水器。 在具有压缩机3,室内热交换器8(冷凝器),膨胀阀5和室外热交换器6(蒸发器))的制冷剂回路的热泵中,依次连接有用于检测的蒸发器制冷剂饱和温度检测单元10 室外热交换器6的蒸发温度Te,室外热交换器6的蒸发器吸入空气温度Ta的蒸发器吸入空气温度检测单元11,压缩机3的压缩机频率f的压缩机频率检测单元12以及 提供了用于检测室外热交换器6上的霜冻形成状态的霜冻形成状态检测单元103,并且霜冻形成状态检测单元103检测室外热交换器6上的霜冻形成引起的热交换性能的下降 特征量T1是通过除去蒸发之间的差而获得的计算值 r吸入空气温度Ta和蒸发温度Te通过压缩机频率f。