会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明公开
    • ANOMALY DETECTION BY SELF-LEARNING OF SENSOR SIGNALS
    • 通过传感器信号的自学习来进行异常检测
    • EP3312765A1
    • 2018-04-25
    • EP17160491.1
    • 2017-03-13
    • Tata Consultancy Services Limited
    • Bandyopadhyay, SomaUKIL, ArijitSingh, RiturajPuri, ChetanyaPal, ArpanMurthy, C A
    • G06K9/00G06F17/18A61B5/0468
    • A61B5/7267A61B5/021A61B5/0468A61B5/14551G06F17/18G06K9/0053G06N99/005
    • Accurate detection of anomaly in sensor signals is critical and can have an immense impact in the health care domain. Accordingly, identifying outliers or anomalies with reduced error and reduced resource usage is a challenge addressed by the present disclosure. Self-learning of normal signature of an input sensor signal is used to derive primary features based on valley and peak points of the sensor signals. A pattern is recognized by using discrete nature and strictly rising and falling edges of the input sensor signal. One or more defining features are identified from the derived features based on statistical properties and time and frequency domain properties of the input sensor signal. Based on the values of the defining features, clusters of varying density are identified for the input sensor signal and based on the density of the clusters, anomalous and non-anomalous portions of the input sensor signals are classified.
    • 准确检测传感器信号中的异常非常重要,并且可能会对医疗保健领域产生巨大影响。 因此,识别具有减少的错误和减少的资源使用的异常值或异常是本公开所解决的挑战。 输入传感器信号的正常特征的自学习被用于基于传感器信号的谷点和峰值点导出主要特征。 通过使用输入传感器信号的离散特性和严格的上升和下降沿来识别模式。 基于输入传感器信号的统计特性以及时间和频率域属性,从派生特征中识别一个或多个定义特征。 基于定义特征的值,针对输入传感器信号识别变密度的簇,并且基于簇的密度,对输入传感器信号的异常和非异常部分进行分类。