会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明公开
    • Integrated laser-based light source
    • 集成的基于激光的光源
    • EP0786837A2
    • 1997-07-30
    • EP97300440.1
    • 1997-01-24
    • Hewlett-Packard Company
    • Baldwin, Richard R.Yuen, Albert Y.Zhang, TaoSears, David M.Larson, Leif EricCorzine, Scott W.Ertel, John P.Holland, William D.Tan, Michael R.T.Wang, Shih-Yuan
    • H01S3/025H01L27/15H01S3/085H01S3/25H01S3/133
    • H01S5/02296H01L2224/48091H01S5/02212H01S5/02228H01S5/02284H01S5/02288H01S5/02292H01S5/026H01S5/0264H01S5/0683H01S5/183H01S5/423H01L2924/00014
    • An integrated laser-based light source (100,100A-100C,200,250,300,320,340,350,500,600,620,700,720,800,900), which generates an output light beam (119,819) having a controlled intensity, comprises a package (105) in which are mounted a laser (101, 801), a light sensor (111, 811) and a coupler (114, 314A-314D, 514, 614, 714, 814, 914). The laser has one and only one light-emitting face (e.g., 109) from which a light beam is radiated as a radiated light beam (107). The light sensor generates an electrical signal representing the intensity of light energy falling it. The coupler couples a fraction (117, 717, 917) of the radiated light beam to the light sensor, and provides the remainder of the radiated light beam as the output light beam. Since the light coupled to the light sensor by the coupler is a fraction of the radiated light beam, the electrical signal generated by the light sensor also represents the intensities of the radiated light beam and of the output light beam. A suitable control circuit (127, 827), when fed with the electrical signal generated by the light sensor, can control the laser current to hold the electrical signal generated by the light sensor to a predetermined value that corresponds to the output light beam having a predetermined intensity.
    • 产生具有受控强度的输出光束(119,819)的集成的基于激光的光源(100,100A-100C,200,250,300,320,340,350,500,600,620,700,720,800,900)包括其中安装有激光器(101,801)的封装(105),光 传感器(111,811)和耦合器(114,314A-314D,514,614,714,814,914)。 该激光器具有一个并且仅仅一个发射面(例如109),从该发射面发射光束作为辐射光束(107)。 光传感器产生表示落在其上的光能强度的电信号。 该耦合器将辐射光束的一部分(117,717,917)耦合到光传感器,并提供辐射光束的其余部分作为输出光束。 由于通过耦合器耦合到光传感器的光是辐射光束的一小部分,所以由光传感器产生的电信号也表示辐射光束和输出光束的强度。 合适的控制电路(127,827)在被馈送有由光传感器产生的电信号时可以控制激光电流以将由光传感器产生的电信号保持为预定值,该预定值对应于具有 预定强度。
    • 3. 发明公开
    • System and method for the monolithic integration of a light emitting device and a photodetector using a native oxide semiconductor layer
    • 系统和方法,用于使用本机半导体氧化物的发光器件的单片集成和光检测器
    • EP1009032A1
    • 2000-06-14
    • EP99116407.0
    • 1999-08-20
    • Hewlett-Packard Company
    • Aronson, Lewis B.Tan, Michael R.T.Corzine, Scott W.Babic, Dubravko I
    • H01L27/15H01S5/026
    • H01S5/0264H01L27/15H01S5/0425H01S5/183H01S5/2027
    • A laser and photodetector combination (100, 200, 300, 400) having a structure in which the layer of the photodetector (110, 210, 310, 410) that contacts the laser (120, 220, 320, 420) is separated from the laser by a native semiconductor oxide layer (115, 215, 315, 415) that is both insulating and has a refractive index lower than that of the laser (120, 220, 320, 420) and the photodetector (110, 210, 310, 410). This configuration results in a laser and photodetector structure (100, 200, 300, 400) that minimizes the capture of the spontaneous emission light output from the laser (120, 220, 320, 420) by the photodetector (110, 210, 310, 410) while electrically isolating the laser from the photodetector. The electrical isolation of the laser from the photodetector results in a four terminal device in which the laser and photodetector(100, 200, 300, 400) may be independently biased, and can therefore be operated at a very low bias voltage.
    • 激光器和光电检测器组合(100,200,300,400)具有在光检测器(110,210,310,410)的层没有接触所述激光器(120,220,320,420)的结构被从分离 激光由天然半导体氧化物层(115,215,315,415),既绝缘且具有折射率比所述激光器(120,220,320,420)和光电检测器(110,210,310的下部, 410)。 在一个激光器和光电检测器结构该配置的结果(100,200,300,400)做了最大限度地减少自发发射的光输出的捕获从激光器(120,220,320,420)由所述光电检测器(110,210,310, 410),而电隔离的光检测器的激光。 从在其中激光器和光电检测器(100,200,300,400)可以是unabhängig偏置,并且可以以非常低的偏置电压THEREFORE操作的四端器件的光检测器的结果,激光的电隔离。
    • 6. 发明公开
    • Light-emitting device
    • Lichtemittierende Vorrichtung
    • EP0803948A2
    • 1997-10-29
    • EP97302749.3
    • 1997-04-22
    • Hewlett-Packard Company
    • Tan, Michael R.T.Yuen, Albert T.Wang, Shih-YuanHasnain, GhulamHoung, Yu-Min
    • H01S3/19H01S3/085H01L33/00
    • H01L33/30H01L33/0016H01L33/0062H01S5/0207H01S5/0421H01S5/18305H01S5/18308H01S5/2059H01S5/2063H01S5/3054H01S5/3095H01S5/423
    • A light-emitting device (200, 300) having electrical connections made to semiconductor regions of the same conductivity type. The light-emitting device comprises a substrate structure (201), a light-generating structure (203, 303), a first electrode (214, 314) and a second electrode (212, 312). The substrate structure includes a substrate region (202), a buffer region (210) and a tunnel junction (216) between the substrate region and the buffer region. The substrate region is a layer of compound semiconductor material of a first conductivity type and has a first surface (226) opposite a second surface (228). The buffer region (210) is a layer of compound semi-conductor material of a second conductivity type, opposite the first conductivity type. The buffer region is located on the first surface (226) of the substrate region and includes a surface (232) remote from the substrate region. The light-generating structure (203, 303) includes an upper region (206, 306) of compound semiconductor material of the first conductivity type, a lower region (208, 308) of compound semiconductor material of the second conductivity type, and a light-generating region (204, 304) between the upper region and the lower region. The upper region includes a surface (234, 334) remote from the lower region. The light-generating structure is located on the substrate structure with the lower region (206, 306) adjacent the surface (232) of the buffer region. The first electrode (214, 314) is located on the second surface (228) of the substrate region. The second electrode (212, 312) is located on the surface (234, 334) of the upper region (206, 306) of the light-generating structure.
    • 具有与相同导电类型的半导体区域形成电连接的发光器件(200,300)。 发光装置包括基板结构(201),发光结构(203,303),第一电极(214,314)和第二电极(212,312)。 衬底结构包括在衬底区域和缓冲区域之间的衬底区域(202),缓冲区域(210)和隧道结(216)。 衬底区域是第一导电类型的化合物半导体材料层,并且具有与第二表面(228)相对的第一表面(226)。 缓冲区(210)是与第一导电类型相反的第二导电类型的复合半导体材料层。 缓冲区域位于衬底区域的第一表面(226)上并且包括远离衬底区域的表面(232)。 发光结构(203,303)包括第一导电类型的化合物半导体材料的上部区域(206,306),第二导电类型的化合物半导体材料的下部区域(208,308)和光 在上部区域和下部区域之间产生生成区域(204,304)。 上部区域包括远离下部区域的表面(234,334)。 光产生结构位于衬底结构上,其中下区域(206,306)邻近缓冲区域的表面(232)。 第一电极(214,314)位于衬底区域的第二表面(228)上。 第二电极(212,312)位于发光结构的上部区域(206,306)的表面(234,334)上。
    • 9. 发明公开
    • Vertical-cavity surface-emitting laser
    • 激光雷达激光共振器
    • EP0772269A1
    • 1997-05-07
    • EP96307520.5
    • 1996-10-16
    • Hewlett-Packard Company
    • Wang, Shih-YuanTan, Michael R.T.Holland, William D.Ertel, John P.Corzine, Scott W.
    • H01S3/085
    • H01S5/18355H01S5/18308H01S5/18338H01S5/18394H01S5/3054H01S5/3095H01S5/423
    • A vertical-cavity surface-emitting laser (101) that generates light having a fixed direction of polarization has a plane light-generating region (109) sandwiched between a first conductive mirror region (110) and a second conductive mirror region (108). The first conductive mirror region (110) has an opposite conductivity mode from the second conductive mirror region (108). The first conductive mirror region (110) has a remote surface (123) substantially parallel to the light-generating region (109) and an electrode (119) formed on the remote surface (123). The electrode (119) bounds a light emission port (121) from which the light is emitted in a direction (135) defining an axis. A reduced-conductivity region (115) is formed in the first conductive mirror region (110) surrounding the axis and extending from the remote surface (123) towards the light-emitting region (109) to define a core region (117) in the first conductive mirror region (110). The light emission port (121) and/or the core region (117) has first and second dimensions in orthogonal directions in a plane parallel to the light-generating region (109). The first dimension is greater than the second dimension to set the direction of polarization of the light to the direction of the first dimension. The laser is an n-drive device grown on a n+- Substrate incorporating a degeneratively doped p-n junction formed by the n+- Substrate and a p-type conductive layer.
    • 产生具有固定偏振方向的光的垂直腔表面发射激光器(101)具有夹在第一导电镜区域(110)和第二导电镜区域(108)之间的平面光产生区域(109)。 第一导电镜区域(110)具有与第二导电镜区域(108)相反的导电模式。 第一导电镜区域(110)具有基本上平行于发光区域(109)的远程表面(123)和形成在远程表面(123)上的电极(119)。 电极(119)在限定轴线的方向(135)上限定发光的发光口(121)。 在围绕轴线的第一导电镜区域(110)中形成还原导电区域(115),并且从远离表面(123)朝向发光区域(109)延伸以限定在该区域中的芯区域(117) 第一导电镜区域(110)。 光发射端口(121)和/或芯区域(117)在与发光区域(109)平行的平面中具有正交方向上的第一和第二尺寸。 第一尺寸大于第二尺寸以将光的偏振方向设置为第一尺寸的方向。 激光器是在n + - 衬底上生长的n驱动器件,其包含由n + - 衬底和p型导电层形成的退化掺杂的p-n结。
    • 10. 发明公开
    • Surface-emitting lasers
    • 表面发射激光器
    • EP0748007A2
    • 1996-12-11
    • EP96304142.1
    • 1996-06-05
    • Hewlett-Packard Company
    • Tan, Michael R.T.Wang, Shih-YuanHoung, Yu-Min
    • H01S3/085H01S3/025
    • H01S5/18308H01S5/02461H01S5/02476H01S5/0425
    • A surface-emitting laser includes optically transparent layers on a side of a DBR mirror structure (24; 44; 74) that is opposite to an optical cavity of the laser. In one embodiment, the transparent layer is a heat-conducting layer (34) that has an efficient heat transfer relationship with an opening in a top electrode (30) and with a heat-spreading layer (36). The heat-spreading layer increases the diameter of the electrode, so as to reduce the thermal impedance of the surface-emitting laser. The heat-spreading layer may be annular in shape and may have an inside diameter (38) that is less than the outside diameter of the electrode, allowing the heat-spreading layer to first overlap the electrode and then overlap the portion of the heat-conducting layer that resides on the inside portion of the electrode. In another embodiment, the optically transparent layer is positioned between the top electrode (46; 76) and the top DBR mirror structure (44; 74) of the surface-emitting laser. In this embodiment, the transparent layer is a current-spreading layer (42; 64; 68) that reduces the lateral resistance of the laser. Lateral resistance is reduced by providing a layer having a thickness of one-half of the wavelength of the light energy generated in the laser times an odd multiple greater than one. Optionally, two half-wavelength layers (64 and 66) may be formed between the electrode and the mirror structure, with the upper layer (66) being selected primarily for its electrical properties and the lower layer (64) being selected primarily for its optical properties.