会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明公开
    • BRIGHT AND DURABLE FIELD EMISSION SOURCE DERIVED FROM REFRACTORY TAYLOR CONES
    • HELLE UND DAUERHAFTE FELDEMISSIONSQUELLE AUS FEUERFESTEN TAYLOR-KEGELN
    • EP3066680A1
    • 2016-09-14
    • EP14860789.8
    • 2014-11-07
    • HIRSCH, Gregory
    • HIRSCH, Gregory
    • H01J49/04
    • H01J37/073H01J1/304H01J1/3044H01J9/025H01J37/08H01J2201/30411H01J2237/06341H01J2237/0805
    • A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.
    • 一种具有改善的亮度和耐久性的场致发射体的方法,其依赖于具有高熔点的导电材料产生液体泰勒锥。 该方法要求用聚焦激光束熔化线基底的端部,同时在材料上施加高的正电位。 随后通过停止激光功率使得到的熔融泰勒锥快速淬火。 在很大程度上通过辐射冷却有利于快速淬火,导致具有与原始液体泰勒锥体的特征密切相似的特征的结构。 因此获得的冷冻泰勒锥在电子束应用中产生用于场发射源的期望的尖端形式。 通过重复初始形成程序容易地实现冷冻泰勒锥的再生。 高温液体泰勒锥也可用作具有以前认为不实际实施的化学元素的明亮离子源。
    • 2. 发明公开
    • PRESSED CAPILLARY OPTICS
    • 压毛巾光学
    • EP1364240A2
    • 2003-11-26
    • EP02705955.9
    • 2002-01-22
    • Hirsch, Gregory
    • Hirsch, Gregory
    • G02B6/38
    • B29D11/00B29C43/18B29C2043/023B29L2011/00G21K1/06G21K2201/067
    • A capillary optic produced by impression has a mold with an external profile figured for radiation transmission along an axis used as a mandrel for impression. The mold (W) often takes the form of a precisely etched wire. At least one soft plate (P) is used for impressing the mold into the soft plate. The mold is removed from the soft plate to leave a vacant impression figured for radiation transmission in the soft plate along an axis. The impression is then closed to provide for radiation transmission along the axis of the impression. In the most common embodiment, two relatively soft plates (P) having identical compositions with flat and highly polished initial surfaces are used. The impression(s) can be coated with reflective materials. Disclosure of an optical connector and emitter is included.
    • 由印模产生的毛细管光学器件具有模具,该模具的外部轮廓被设计用于沿着用作印模心轴的轴线进行辐射传输。 模具(W)通常采用精确蚀刻线的形式。 至少有一个软板(P)用于将模具压入软板。 将模具从软板移除以留下空心印象,该空间印象被计算用于沿着轴线在软板中进行辐射传输。 然后关闭该印象以提供沿印模轴线的辐射传输。 在最常见的实施例中,使用了两个具有相同组成并具有平坦和高度抛光初始表面的相对较软的板(P)。 印模可以涂上反光材料。 包括光连接器和发射器的公开。
    • 3. 发明公开
    • SOFT X-RAY MICROFLUOROSCOPE
    • MIKROFLOROSKOPIEGERÄTFÜRWEICHERÖNTGENSTRAHLUNG
    • EP0968409A4
    • 2002-10-25
    • EP98907433
    • 1998-02-06
    • HIRSCH GREGORY
    • HIRSCH GREGORY
    • G21K1/06G21K4/00G21K7/00H05G2/00H05H1/24G01N21/00
    • H05G2/001
    • A plasma source of soft x-rays provides the illumination for a microfluoroscope. In general, an x-ray relay optic collects part of the diverging plasma radiation and redirects it to a distant plane. At that plane, the fine-grained or grainless fluorescent screen of a microfluoroscope is placed to receive the radiation. A specimen is placed in direct contact with the screen, or in very close proximity, so that its x-ray shadow is projected onto the screen. The screen is very thin and transparent to visible or ultraviolet light so that a high-numerical-aperture optical microscope objective can closely approach and view the screen from the opposite side. The optical microscope views the fluorescent light emitted by the screen, which corresponds to the x-ray absorption shadow of the specimen. In general, a very thin, x-ray transparent vacuum window is used to separate the specimen, fluorescent screen, and microscope from the vacuum of the plasma source. Thin-film filters and/or monochromator devices are used to limit the wavelengths of soft x-rays which reach the fluorescent screen to the desired energy range. The use of the apparatus and process occurs with either a separate instrument or as an add-on feature to a conventional optical microscope.
    • 软X射线的等离子体源为微透镜提供照明。 通常,x射线中继光学器件收集发散等离子体辐射的一部分并将其重定向到远离的平面。 在该平面上,放置微荧光镜的细粒或无颗粒荧光屏以接收辐射。 将样本放置在与屏幕直接接触的位置,或者非常靠近,以便将其X射线投影到屏幕上。 屏幕对于可见光或紫外光非常薄且透明,使得高数值孔径光学显微镜物镜可以从相对侧紧密接近并观看屏幕。 光学显微镜观察屏幕发出的荧光,对应于样品的X射线吸收影。 通常,使用非常薄的X射线透明真空窗口将样品,荧光屏和显微镜与等离子源的真空分开。 使用薄膜滤波器和/或单色器件来将到达荧光屏的软x射线的波长限制到期望的能量范围。 装置和过程的使用与单独的仪器或作为常规光学显微镜的附加特征一起发生。
    • 4. 发明公开
    • SOFT X-RAY MICROFLUOROSCOPE
    • 软X射线微流变仪
    • EP0968409A2
    • 2000-01-05
    • EP98907433.1
    • 1998-02-06
    • HIRSCH, Gregory
    • HIRSCH, Gregory
    • G01N21/00
    • H05G2/001
    • A plasma source of soft x-rays provides the illumination for a microfluoroscope. In general, an x-ray relay optic (c) collects part of the diverging plasma (x) radiation and redirects it to a distant plane. At that plane, the fine-grained or grainless fluorescent screen (F) of a microfluoroscope is placed to receive the radiation. A specimen (S) is placed in direct contact with the screen (F), or in very close proximity, so that its x-ray shadow is projected onto the screen (F). The screen (F) is very thin and transparent to visible or ultraviolet light so that a high-numerical-aperture optical microscope objective can closely approach and view the screen from the opposite side. The optical microscope (Y) views the fluorescent light emitted by the screen (F), which corresponds to the x-ray absorption shadow of the specimen. In general, a very thin x-ray transparent vacuum window (Ws) is used to separate the specimen fluorescent screen (F), and microscope from the vacuum of the plasma source.
    • 软X射线的等离子体源为微透镜提供照明。 通常,X射线中继光学器件(c)收集部分发散等离子体(x)辐射并将其重定向到远离的平面。 在该平面上,放置微荧光镜的细粒或无粒荧光屏(F)以接收辐射。 将样本(S)放置成与屏幕(F)直接接触或非常靠近,以使其X射线阴影投射到屏幕(F)上。 屏幕(F)对于可见光或紫外光非常薄且透明,使得高数值孔径光学显微镜物镜可以从相对侧紧密接近并观看屏幕。 光学显微镜(Y)观察屏幕(F)发出的荧光,其对应于样本的X射线吸收阴影。 通常,使用非常薄的X射线透明真空窗口(Ws)将样品荧光屏(F)和显微镜与等离子源的真空分开。
    • 5. 发明公开
    • POINT PROJECTION PHOTOELECTRON MICROSCOPE WITH HOLLOW NEEDLE.
    • 空心针点投影PHOTO电镜观察。
    • EP0322419A4
    • 1990-06-28
    • EP87906273
    • 1987-09-09
    • HIRSCH GREGORY
    • HIRSCH GREGORY
    • H01J37/252G01N23/227H01J37/285
    • H01J37/285G01N23/2273
    • A point projection photoelectron microscope. A specimen is enclosed in a photoconductor (N) that is subject to the photoelectric effect. The specimen is positioned on a pedestal in an evacuated chamber (C). The specimen is bombarded by radiation, either of light, ultraviolet radiation, or soft X-rays (S). The photoconductor is in a vacuum chamber and it is highly charged with a negative potential. The vacuum chamber includes a surface sensitive to electron flow (P) for making an image (I). This surface is a phosphor screen or an image intensifier having the capability to be gated for imaging or not imaging incident electrons or a segmented electron collecting anode for electronic imaging. In operation, a collimated beam of radiation, ranging from light to soft x-rays is projected through a specimen disposed in the photoconductor. An image of the specimen is produced on the photoconductor. The light or X-ray which impact on the photoconductor which produce electrons by the photoelectric effect. The electrons migrate beyond the photoconductor where the electric field at the tip of the photoconductor radially repels the electrons to an towards the imaging surface, typically the image intensifier.
    • 6. 发明公开
    • POINT PROJECTION PHOTOELECTRON MICROSCOPE WITH HOLLOW NEEDLE
    • PUNKTPROJEKTIONS-PHOTO电镜观察MIT HOHLNADEL。
    • EP0322419A1
    • 1989-07-05
    • EP87906273.0
    • 1987-09-09
    • HIRSCH, Gregory
    • HIRSCH, Gregory
    • H01J37G01N23
    • H01J37/285G01N23/2273
    • Dans un microscope photoélectronique à projection ponctuelle, un spécimen est renfermé dans un photoconducteur (N) sensible à l'effet photoélectrique. Le spécimen est placé sur un socle dans une chambre à vide (C), puis bombardé avec des rayonnements, que ce soit de la lumière, des rayonnements ultraviolets ou des rayons X doux (S). Le photoconducteur est placé dans une chambre à vide et fortement chargé avec un potentiel négatif. La chambre à vide comprend une surface sensible au flux d'électrons (P) pour former une image (I). Cette surface est un écran luminescent ou un tube intensificateur d'image susceptible d'être déclenché afin d'imager ou non des électrons incidents, ou une anode segmentée collectrice d'électrons du type utilisée en imagerie électronique. En fonctionnement, un faisceau aligné de rayonnements, allant de la lumière aux rayons X doux, est projeté à travers le spécimen placé dans le photoconducteur. Une image du spécimen est formé sur le photoconducteur par la lumière ou les rayons X qui frappent le photoconducteur, celui-ci produisant des électrons par effet photoélectrique. Le électrons migrent au-delà du photoconducteur, jusqu'au champ électrique situé à l'extrémité du photoconducteur. Le champ électrique repousse les électrons radialement vers la surface d'imagerie, typiquement le tube intensificateur d'image.
    • 8. 发明授权
    • POINT PROJECTION PHOTOELECTRON MICROSCOPE WITH HOLLOW NEEDLE
    • PUNKTPROJEKTIONS-PHOTO电子显微镜MIT HOHLNADEL
    • EP0322419B1
    • 1996-10-30
    • EP87906273.5
    • 1987-09-09
    • HIRSCH, Gregory
    • HIRSCH, Gregory
    • G01N23/00G03G13/00G03G15/00G21K7/00
    • H01J37/285G01N23/2273
    • A point projection photoelectron microscope. A specimen is enclosed in a photoconductor (N) that is subject to the photoelectric effect. The specimen is positioned on a pedestal in an evacuated chamber (C). The specimen is bombarded by radiation, either of light, ultraviolet radiation, or soft X-rays (S). The photoconductor is in a vacuum chamber and it is highly charged with a negative potential. The vacuum chamber includes a surface sensitive to electron flow (P) for making an image (I). This surface is a phosphor screen or an image intensifier having the capability to be gated for imaging or not imaging incident electrons or a segmented electron collecting anode for electronic imaging. In operation, a collimated beam of radiation, ranging from light to soft x-rays is projected through a specimen disposed in the photoconductor. An image of the specimen is produced on the photoconductor. The light or X-ray which impact on the photoconductor which produce electrons by the photoelectric effect. The electrons migrate beyond the photoconductor where the electric field at the tip of the photoconductor radially repels the electrons to an towards the imaging surface, typically the image intensifier.
    • 10. 发明公开
    • BRIGHT AND DURABLE FIELD EMISSION SOURCE DERIVED FROM REFRACTORY TAYLOR CONES
    • HELLE UND DAUERHAFTE FELDEMISSIONSQUELLE AUS FEUERFESTEN TAYLOR-KEGELN
    • EP3066680A4
    • 2017-07-05
    • EP14860789
    • 2014-11-07
    • HIRSCH GREGORY
    • HIRSCH GREGORY
    • H01J49/04H01J1/304H01J9/02H01J37/073H01J37/08
    • H01J37/073H01J1/304H01J1/3044H01J9/025H01J37/08H01J2201/30411H01J2237/0805
    • A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tip end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.
    • 一种制造具有改进的亮度和耐久性的场致发射体的方法依赖于由具有高熔点的导电材料形成液体泰勒锥体。 该方法要求用聚焦激光束熔化线基底的端部,同时在材料上施加高的正电位。 随后通过停止激光功率使得到的熔融泰勒锥体迅速淬火。 快速淬火在很大程度上通过辐射冷却促进,导致具有与原始液体泰勒锥相匹配的特征的结构。 由此获得的冷冻泰勒锥体在电子束应用中产生用于场发射源的期望的尖端形式。 通过重复最初的形成程序可以容易地实现冷冻泰勒锥原位再生。 高温液体泰勒锥也可以用作先前被认为不切实际实施的化学元素的明亮离子源。