会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Optically powered resonant integrated microstructure magnetic field gradient sensor
    • 光电谐振集成微结构磁场梯度传感器
    • US06714007B2
    • 2004-03-30
    • US10051489
    • 2002-01-18
    • Daniel W. Youngner
    • Daniel W. Youngner
    • G01R33032
    • G01R33/022
    • A device 10 for sensing a magnetic field gradient using an optically powered resonant integrated microstructure (O-RIMS). The O-RIMS comprises a microbeam 11 having a resonant frequency, a shell 16 supporting the microbeam 11, sensor electronics, a light transporter 36, such as an optical fiber or optical waveguide, in proximity to the shell 16, and a ferromagnetic or magnetically permeable element 26 attached to the shell 16. The ferromagnetic or magnetically permeable element 26 experiences a torque about the fulcrum 24 when a magnetic field gradient is present, and causes a strain on the shell 16. The strain is in turn transmitted to the microbeam 11, thereby affecting its resonant frequency. The change in resonant frequency of the microbeam 11 is conveyed to the sensor electronics via the light transporter 36.
    • 用于使用光电谐振集成微结构(O-RIMS)感测磁场梯度的装置10。 O-RIMS包括具有共振频率的微束11,支撑微束11的壳体16,传感器电子器件,靠近壳体16的光传输器36,例如光纤或光波导,以及铁磁或磁性 可渗透元件26附接到外壳16.当存在磁场梯度时,铁磁或导磁元件26经受围绕支点24的扭矩,并且在外壳16上引起应变。该应变又传递到微束11 ,从而影响其谐振频率。 微波束11的谐振频率的变化通过光传输器36传送到传感器电子设备。
    • 3. 发明授权
    • Devices and methods for mapping complex magnetic fields through discrete magnetic potential measurements
    • 通过离散磁势测量对复杂磁场进行映射的装置和方法
    • US06396263B1
    • 2002-05-28
    • US09572486
    • 2000-05-15
    • Herbert A. Leupold
    • Herbert A. Leupold
    • G01R33032
    • G01R33/10G01R33/0322
    • A magnetic potential mapping device is provided by placing a planar polarized light source near an optically active fiber element traversing a magnetic field, so constructed that rotating planar polarized light is transmitted through the optical fiber and detected by a light detector at the fiber element's other end. The light detector measures an angle of rotation of rotating polarized light. Rotation of polarized light within the optical fiber traversing the field directly indicates magnetic potential at the point where the angle of rotation is measured, with respect to the magnetic potential at the point where the light entered the fiber element. Measuring the rotation of the polarized light passing through each fiber within the field allows mapping the magnetic potentials at any point in the magnetic field with respect to the point at which the light enters the optically active fiber. The present invention also contemplates a related method for automatically compensating a magnetic field source. This method encompasses forming an array of stationary magnetic probes positioned in the same configuration as the points to be tested in a cross section of the magnetic frame. The magnetic frame is placed over the probe array so that the probes can automatically make numerous magnetic potential measurements based on the angle of rotation of polarized light injected into the probe array. Data from these numerous measurements would be automatically provided to a data processing means to map the magnetic potential of the frame.
    • 通过将平面偏振光源放置在穿过磁场的光学有源光纤元件附近来提供磁势映射装置,其结构是使得旋转的平面偏振光透过光纤并由光纤元件的另一端的光检测器检测 。 光检测器测量旋转偏振光的旋转角度。 穿过磁场的光纤中的偏振光的旋转直接表示相对于光进入光纤元件的点处的磁电位的测量旋转角度的点的磁电位。 测量通过场内的每个光纤的偏振光的旋转允许在磁场中的任何点相对于光进入光学活性光纤的点映射磁势。 本发明还考虑了用于自动补偿磁场源的相关方法。 该方法包括在磁性框架的横截面中形成与待测试点相同的构造的固定磁性探针的阵列。 磁性框架放置在探针阵列上方,使得探针可以基于注入到探针阵列中的偏振光的旋转角自动进行大量磁势测量。 来自这些大量测量的数据将自动提供给数据处理装置以映射框架的磁势。
    • 4. 发明授权
    • Sensor for optically measuring magnetic fields
    • 用于光学测量磁场的传感器
    • US06756781B2
    • 2004-06-29
    • US10294905
    • 2002-11-15
    • Paul Grems DuncanJohn Alan Schroeder
    • Paul Grems DuncanJohn Alan Schroeder
    • G01R33032
    • G01R15/245G01R15/246G01R33/0322
    • Described are improved transmissive magneto-optical sensors that may be used to determine the magnitude and phase of a magnetic field surrounding a conductor, and when in contact with the conductor, the surface temperature of the conductor. The magneto-optical sensor may be made to be symmetric around the direction of propagation of the internal light, enabling ease of manufacturing as well as automated assembly and calibration. The magneto-optical sensor may also be made to be symmetric about the plane determined by the Faraday rotator material, thus enabling reciprocating optical paths for increased vibration and birefringence immunity. The disclosed sensors preferably include cylindrically symmetrical components, thereby making the sensor readily mass-producible.
    • 描述了改进的透射式磁光传感器,其可以用于确定导体周围的磁场的大小和相位,以及当与导体接触时,导体的表面温度。 可以使磁光传感器围绕内部光的传播方向对称,从而使制造方便以及自动组装和校准。 磁光传感器也可以被制作为关于由法拉第转子材料确定的平面对称,从而使往复光学路径增加振动和双折射抗扰度。 所公开的传感器优选地包括圆柱形对称的部件,从而使传感器容易地大规模生产。
    • 5. 发明授权
    • Magneto-optical microscope magnetometer
    • 磁光显微镜磁力计
    • US06528993B1
    • 2003-03-04
    • US09717611
    • 2000-11-21
    • Sung Chul ShinSug Bong Choe
    • Sung Chul ShinSug Bong Choe
    • G01R33032
    • G02B21/0016G01R33/032
    • A magneto-optical microscope magnetometer capable of simultaneously measuring a hysteresis loop and activation magnetic moment of a submicrometer-scale local area (about 0.3×0.3 &mgr;m). An electromagnet capable of applying a magnetic field to a magnetic material is attached to a polarizing optical microscope capable of observing a magnetized state of the magnetic material, such that images of the microscope varying with the strength of the applied magnetic field are grabbed in real time by a charge coupled device camera and then analyzed. The magneto-optical microscope magnetometer can measure a hysteresis loop and activation magnetic moment in a submicrometer-scale local area observed by the polarizing optical microscope. Further, the magneto-optical microscope magnetometer can measure hysteresis loops and activation magnetic moments simultaneously with respect to all CCD pixels of the camera and observe coercivity and activation magnetic moment distributions of the entire magnetic material.
    • 能够同时测量亚微米级局域(约0.3×0.3mum)的磁滞回线和激活磁矩的磁光显微镜磁力计。 将能够向磁性材料施加磁场的电磁铁安装在能够观察磁性材料的磁化状态的偏振光学显微镜上,使得随着施加的磁场的强度而变化的显微镜的图像被实时地抓住 通过电荷耦合器件相机进行分析。 磁光显微镜磁力计可以测量由偏光光学显微镜观察到的亚微米级局部区域的磁滞回线和激活磁矩。 此外,磁光显微镜磁力计可以相对于相机的所有CCD像素同时测量磁滞回线和激励磁矩,并观察整个磁性材料的矫顽力和激活磁矩分布。
    • 7. 发明授权
    • Devices and methods for investigating the magnetic properties of objects
    • 用于调查物体磁性的装置和方法
    • US06806704B2
    • 2004-10-19
    • US10450444
    • 2003-10-17
    • Jürgen SchützmannUlrich Schanda
    • Jürgen SchützmannUlrich Schanda
    • G01R33032
    • G07D7/04G06K19/06196G06K19/14G07D7/12
    • The invention relates to apparatuses and a corresponding method for examining magnetic properties of objects, in particular sheet material, such as bank notes (20). The apparatuses comprise a magneto-optic layer (10) whose optical properties are influenceable by the magnetic properties of the sheet material (20), a light source (11) for producing light that is coupled into the magneto-optic layer (10), and a detector (13) for detecting light that is transmitted and/or reflected by the magneto-optic layer (10). For reliable examination of the magnetic properties of sheet material it is provided that the direction of propagation of the coupled-in light extends parallel to a base surface (9) of the magneto-optic layer (10). The invention permits the magnetic properties in particular of sheet material with areas emitting very weak magnetic fields to be examined with very high sensitivity and reliability.
    • 本发明涉及用于检查物体(特别是片材)如纸币(20)的磁性的装置和相应的方法。 这些装置包括其光学特性由片材(20)的磁性能影响的磁光层(10),用于产生耦合到磁光层(10)中的光的光源(11) 以及用于检测由磁光层(10)传输和/或反射的光的检测器(13)。为了可靠地检查片材的磁特性,提供耦合光的传播方向 平行于磁光层(10)的基面(9)延伸。本发明允许以非常高的灵敏度和可靠性检查具有发射非常弱的磁场的区域的片材的磁特性。
    • 8. 发明授权
    • Apparatus and method for measuring magnetization of surfaces
    • 用于测量表面磁化的装置和方法
    • US06593739B1
    • 2003-07-15
    • US09876621
    • 2001-06-07
    • Bernell Edwin ArgyleJeffery Gregory McCord
    • Bernell Edwin ArgyleJeffery Gregory McCord
    • G01R33032
    • G01R33/0325
    • An optical apparatus and methods for efficiently determining the magnetization of a material at very high optical resolution are disclosed. Individual components of the magnetization may be determined. Components in the plane of the sample surface are imaged by illuminating the material obliquely with substantially parallel light of relatively high power and very well controlled uniformity and polarization, and using light scattered obliquely in a parallel beam in the opposite direction at the same angle as the angle of incidence to record an image. Reversing the illumination and observation directions allows subtraction of the two images and measurement of the magnetization in-plane. A second in-plane component orthogonal to the first, is obtained similarly after reorienting the plane of incidence 90 degrees. The third magnetization component,—perpendicular to the sample surface—, may be obtained using illumination at both angles of incidence and subtracting two images, each recorded when a light-polarization angle of offset from extinction, is reversed. All three components may thereby be imaged without recourse to modulating the sample magnetization as in previous methods. Magnetically ‘hard’ as well as ‘soft’ materials are measurable by these methods.
    • 公开了一种用于以非常高的光学分辨率有效地确定材料的磁化的光学装置和方法。 可以确定磁化的各个组分。 通过以基本上平行的相对较高功率和非常好的受控均匀度和极化的光照射材料来成像样品表面的平面中的成分,并且使用在相反方向上以相反方向在相反方向上倾斜散射的光以与 入射角记录图像。 反转照明和观察方向允许减去两个图像和磁化在平面内的测量。 在将入射平面重新定向90度后,类似地获得与第一面正交的第二面内分量。 垂直于样品表面的第三磁化分量可以使用两个入射角的照明并且减去两个图像来获得,每个图像在偏离消光的光偏振角被反转时记录。 因此,如先前的方法那样,所有三个组分可以被成像,而无需求助于调制样品磁化。 磁性“硬”以及“软”材料都可以通过这些方法来测量。