会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明申请
    • METHOD OF DETERMINING THE CONCENTRATION OF AN ANALYTE IN A SAMPLE OF A BODILY FLUID, MOBILE DEVICE, KIT, COMUTER PROGRAM AND COMPUTER-READABLE STORAGE MEDIUM
    • WO2021249895A1
    • 2021-12-16
    • PCT/EP2021/065087
    • 2021-06-07
    • F. HOFFMANN-LA ROCHE AGROCHE DIABETES CARE GMBHROCHE DIABETES CARE, INC.
    • BERG, MaxHAILER, FredrikLIMBURG, BerndTUERCK, VolkerWINKELNKEMPER, Momme
    • G01N21/78G01N21/27A61B5/00G01N21/29G01N21/84G06T7/90G01N21/17G01N21/77G01N2021/1776G01N2021/7759G01N2021/8488G01N21/274G01N21/293G01N21/8483G01N2201/0221
    • A method of determining the concentration of at least one analyte in a sample of a bodily fluid by using a mobile device (112) having at least one camera (120), the method comprising: i) capturing, by using the camera (120), at least one image of at least a part of a color reference card (118) and of at least a part of at least one reagent test field (116) of at least one optical test strip (114) having the sample applied thereto, - wherein, in the image, the test field (116) is in a defined position with respect to the color reference card (118), - wherein the color reference card (118) comprises a plurality of different gray reference fields (126) locally assigned to the test field (116), wherein the plurality of gray reference fields (126) and the test field (116) are locally assigned to each other by being placed in neighboring positions or wherein the plurality of gray reference fields (126) locally assigned to the test field (116) are arranged on the color reference card (118) such that the plurality of gray reference fields (126) surrounds the test field (116), and - wherein the color reference card (118) comprises a plurality of different color reference fields (128) having known reference color values and a plurality of different gray reference fields (126) locally assigned to the color reference fields (128), wherein the plurality of gray reference fields (126) and the color reference fields (128) are locally assigned to each other by being placed in neighboring positions or wherein the plurality of gray reference fields (126) locally assigned to the color reference fields (128) are arranged on the color reference card (118) such that the plurality of gray reference fields (126) surrounds the color reference fields (128), ii) applying at least one predetermined pixel-based mean tone map correction to the image obtained in step i), thereby obtaining at least one first intensity-corrected image, wherein the predetermined pixel-based mean tone map correction comprises an assignment of a second brightness value to a first brightness value, wherein the first brightness value is recorded by the camera (120), wherein each pixel of the recorded image is corrected individually by the predetermined A method of determining the concentration of at least one analyte in a sample of a bodily fluid by using a mobile device (112) having at least one camera (120), the method comprising: i) capturing, by using the camera (120), at least one image of at least a part of a color reference card (118) and of at least a part of at least one reagent test field (116) of at least one optical test strip (114) having the sample applied thereto, - wherein, in the image, the test field (116) is in a defined position with respect to the color reference card (118), - wherein the color reference card (118) comprises a plurality of different gray reference fields (126) locally assigned to the test field (116), wherein the plurality of gray reference fields (126) and the test field (116) are locally assigned to each other by being placed in neighboring positions or wherein the plurality of gray reference fields (126) locally assigned to the test field (116) are arranged on the color reference card (118) such that the plurality of gray reference fields (126) surrounds the test field (116), and - wherein the color reference card (118) comprises a plurality of different color reference fields (128) having known reference color values and a plurality of different gray reference fields (126) locally assigned to the color reference fields (128), wherein the plurality of gray reference fields (126) and the color reference fields (128) are locally assigned to each other by being placed in neighboring positions or wherein the plurality of gray reference fields (126) locally assigned to the color reference fields (128) are arranged on the color reference card (118) such that the plurality of gray reference fields (126) surrounds the color reference fields (128), ii) applying at least one predetermined pixel-based mean tone map correction to the image obtained in step i), thereby obtaining at least one first intensity-corrected image, wherein the predetermined pixel-based mean tone map correction comprises an assignment of a second brightness value to a first brightness value, wherein the first brightness value is recorded by the camera (120), wherein each pixel of the recorded image is corrected individually by the predetermined pixel- based mean tone map correction, wherein the mean tone map correction is derived by combining a plurality of tone map corrections for different types of mobile devices; iii) deriving, from the first intensity-corrected image, local brightness information (174) for at least some of the color reference fields (128) and for the test field (116), by using the gray reference fields (126) locally assigned to the color reference fields (128) and the test field (116), respectively, wherein the local brightness information (174) comprises a numerical indication describing the local intensity of at least one RGB color of the color reference fields (128) and the test field (116), respectively; iv) applying at least one mobile device-specific tone map correction to the first intensity-corrected image, the mobile device-specific tone map correction taking into account the local brightness information (174), thereby obtaining at least one second intensity-corrected image; and v) determining the analyte concentration based on a color formation reaction of the test field (116) by using the second intensity-corrected image.
    • 8. 发明申请
    • OPTICAL MODULE
    • WO2021191196A1
    • 2021-09-30
    • PCT/EP2021/057405
    • 2021-03-23
    • AMS AG
    • CHONG CHEAH, BoonFREDERIX, FilipJAN LOUS, Erik
    • G01N21/84G01N21/78G01N21/77G01N2021/7759G01N21/8483G01N2201/0642
    • An optical module (100) for reading a test region of an assay. The optical module comprises: a first light source (101) for illuminating the test region of the assay; an optical detector (103), comprising an optical input for receiving light emitted from the test region and an electrical output; a substrate (104) for mounting the first light source (101) and the optical detector (103); and a housing (105) comprising: a first opening (106) for providing a first optical path from the first light source (101) to the test region (103); wherein the housing (105) and the substrate (104) enclose and positionally align the first source (101) and the optical detector (103) relative to the first opening (106). The housing (105) may comprise one or more legs (108), such as a flexible hook portion which secures the housing (105) to the substrate (104) with a snap-fit engagement, extending from a first and/or second outer surface of the housing (105) in a vertical direction. Beneficially, the snap-fit engagement provided by the flexible hook portion allows the housing to be aligned and secured without the need to use glue or for example a screw and thread that can be difficult to control and/or risks misalignment of the housing.