会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Methods for passivating silicon devices at low temperature to achieve
low interface state density and low recombination velocity while
preserving carrier lifetime
    • 在低温下钝化硅器件以实现低界面态密度和低复合速度同时保持载流子寿命的方法
    • US5462898A
    • 1995-10-31
    • US249121
    • 1994-05-25
    • Zhizhang ChenAjeet Rohatgi
    • Zhizhang ChenAjeet Rohatgi
    • H01L21/3105H01L21/316H01L23/31H01L21/02
    • H01L21/02164H01L21/02211H01L21/02274H01L21/02307H01L21/02337H01L21/02345H01L21/02362H01L21/3105H01L21/31612H01L23/3171H01L2924/0002H01L2924/13091H01L2924/19041Y10S438/958
    • A new process has been developed to achieve a very low SiO.sub.x /Si interface state density D.sub.it, low recombination velocity S ( 5 ms) for oxides deposited on silicon substrates at low temperature. The technique involves direct plasma-enhanced chemical vapor deposition (PECVD), with appropriate growth conditions, followed by a photo-assisted rapid thermal annealing (RTA) process. Approximately 500-A-thick SiO.sub.x layers are deposited on Si by PECVD at 250.degree. C. with 0.02 W/cm.sup.-2 rf power, then covered with SiN or an evaporated thin aluminum layer, and subjected to a photo-assisted anneal in forming gas ambient at 350.degree. C., resulting in an interface state density D.sub.it in the range of about 1-4.times.10.sup.10 cm.sup.-2 eV.sup.-1, which sets a record for the lowest interface state density D.sub.it for PECVD oxides fabricated to date. Detailed analysis shows that the PECVD deposition conditions, photo-assisted anneal, forming gas ambient, and the presence of an aluminum layer on top of the oxides during the anneal, all contributed to this low value of interface state density D.sub.it. Detailed metal-oxide semiconductor analysis and model calculations show that such a low recombination velocity S is the result of moderately high positive oxide charge (5.times.10.sup.11 -1.times.10.sup.12 cm.sup.-2) and relatively low midgap interface state density (1.times.10.sup.10 -4.times.10.sup.10 cm.sup.-2 eV.sup.-1). Photo-assisted anneal was found to be superior to furnace annealing, and a forming gas ambient was better than a nitrogen ambient for achieving a very low surface recombination velocity S.
    • 已经开发了一种新的工艺,以实现低沉积在硅衬底上的氧化物的低SiO x / Si界面态密度Dit,低复合速度S(<2cm / s)和高有效载流子寿命Teff(> 5ms) 温度。 该技术涉及直接等离子体增强化学气相沉积(PECVD),具有合适的生长条件,随后进行光辅助快速热退火(RTA)工艺。 通过PECVD在250℃下以0.02W / cm 2的功率将约500-A厚的SiO x层沉积在Si上,然后用SiN或蒸发的薄铝层覆盖,并在成型中进行光辅助退火 气体环境在350℃,导致约1-4x10 10 cm -2 eV-1范围内的界面态密度Dit,这为迄今为止制造的PECVD氧化物的最低界面态密度Dit设置了记录。 详细分析表明,在退火过程中,PECVD沉积条件,光辅助退火,形成气体环境以及氧化物顶部铝层的存在都导致了界面态密度Dit的这个低值。 详细的金属氧化物半导体分析和模型计算表明,这种低复合速度S是中等高的正电荷电荷(5×10 11 -1×10 12 cm -2)和相对较低的中间隙界面态密度(1×10-4-4×10cm-2eV-1 )。 发现光辅助退火优于炉退火,并且形成气体环境优于氮环境以实现非常低的表面复合速度S.
    • 2. 发明授权
    • Processes for producing low cost, high efficiency silicon solar cells
    • 生产低成本,高效率硅太阳能电池的工艺
    • US5510271A
    • 1996-04-23
    • US303340
    • 1994-09-09
    • Ajeet RohatgiZhizhang ChenParag Doshi
    • Ajeet RohatgiZhizhang ChenParag Doshi
    • H01L31/0216H01L31/0224H01L31/068H01L31/18
    • H01L31/022425H01L31/02168H01L31/068H01L31/1804Y02E10/547Y02P70/521
    • Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. Silicon solar cell efficiencies of 16.9% have been achieved. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x.
    • 提供利用快速热处理(RTP)的方法用于廉价生产高效硅太阳能电池。 RTP工艺保护少数载体体积寿命τ,并允许选择性地调整硅衬底内扩散区的深度,包括发射极和背面场(bsf)。 硅太阳能电池效率达到16.9%。 在第一RTP工艺中,利用RTP步骤同时将磷和铝分别扩散到硅衬底的前表面和后表面。 此外,原位控制的冷却程序保留载体体积寿命τ,并允许对扩散区域的深度的选择性调节。 在第二个RTP过程中,在RTP步骤中完成磷和铝的同时扩散以及前后接触的退火。 在第三RTP工艺中,RTP步骤同时实现磷和铝的扩散,接触退火,以及双层抗反射/钝化涂层SiN / SiOx的退火。
    • 3. 发明授权
    • Processes for producing low cost, high efficiency silicon solar cells
    • 生产低成本,高效率硅太阳能电池的工艺
    • US5766964A
    • 1998-06-16
    • US579074
    • 1995-12-22
    • Ajeet RohatgiParag DoshiJohn Keith TateJose MejiaZhizhang Chen
    • Ajeet RohatgiParag DoshiJohn Keith TateJose MejiaZhizhang Chen
    • H01L31/0216H01L31/0224H01L31/068H01L31/18
    • H01L31/022425H01L31/02168H01L31/068H01L31/1804Y02E10/547Y02P70/521
    • Processes which utilize rapid thermal processing (RTP) are provided for inexpensively producing high efficiency silicon solar cells. The RTP processes preserve minority carrier bulk lifetime .tau. and permit selective adjustment of the depth of the diffused regions, including emitter and back surface field (bsf), within the silicon substrate. In a first RTP process, an RTP step is utilized to simultaneously diffuse phosphorus and aluminum into the front and back surfaces, respectively, of a silicon substrate. Moreover, an in situ controlled cooling procedure preserves the carrier bulk lifetime .tau. and permits selective adjustment of the depth of the diffused regions. In a second RTP process, both simultaneous diffusion of the phosphorus and aluminum as well as annealing of the front and back contacts are accomplished during the RTP step. In a third RTP process, the RTP step accomplishes simultaneous diffusion of the phosphorus and aluminum, annealing of the contacts, and annealing of a double-layer antireflection/passivation coating SiN/SiO.sub.x. In a fourth RTP process, the process of applying front and back contacts is broken up into two separate respective steps, which enhances the efficiency of the cells, at a slight time expense. In a fifth RTP process, a second RTP step is utilized to fire and adhere the screen printed or evaporated contacts to the structure.
    • 提供利用快速热处理(RTP)的方法用于廉价生产高效硅太阳能电池。 RTP工艺保护少数载体体积寿命τ,并允许选择性地调整硅衬底内扩散区的深度,包括发射极和背面场(bsf)。 在第一RTP工艺中,利用RTP步骤同时将磷和铝分别扩散到硅衬底的前表面和后表面。 此外,原位控制的冷却程序保留载体体积寿命τ,并允许对扩散区域的深度的选择性调节。 在第二个RTP过程中,在RTP步骤中完成磷和铝的同时扩散以及前后接触的退火。 在第三RTP工艺中,RTP步骤同时实现磷和铝的扩散,接触退火,以及双层抗反射/钝化涂层SiN / SiOx的退火。 在第四个RTP过程中,应用前端和后端触点的过程被分解成两个分开的各个步骤,这可以以小的时间花费增加电池的效率。 在第五RTP过程中,使用第二RTP步骤来将丝网印刷或蒸发的触点发射并粘附到结构上。
    • 4. 发明授权
    • Method for low temperature plasma enhanced chemical vapor deposition
(PECVD) of an oxide and nitride antireflection coating on silicon
    • 硅上氧化物和氮化物抗反射涂层的低温等离子体增强化学气相沉积(PECVD)方法
    • US5418019A
    • 1995-05-23
    • US248473
    • 1994-05-25
    • Zhizhang ChenAjeet Rohatgi
    • Zhizhang ChenAjeet Rohatgi
    • C23C16/34C23C16/40C23C16/56G02B1/11B05D3/06G02B5/26
    • H01L31/02168C23C16/345C23C16/402C23C16/56G02B1/115Y02E10/50
    • A sequential plasma-enhanced chemical vapor deposition (PECVD) of SiN and SiO.sub.x produces a very effective double-layer antireflection coating. This antireflection coating is compared with the frequently used and highly efficient double-layer MgF.sub.2 /ZnS coating. It is shown that the double-layer SiO.sub.x /SiN coating improves the short-circuited current (J.sub.sc) by 47%, open-circuit voltage (V.sub.oc) by 3.7%, and efficiency (Eff) by 55% for silicon cells with oxide surface passivation. The counterpart MgF.sub.2 /ZnS coating gives smaller improvement in V.sub.oc and Eff. However, if silicon cells do not have the oxide passivation, the PECVD SiO.sub.x /SiN gives much greater improvement in the cell parameters, 57% in J.sub.sc, 8% in V.sub.oc, and 66% in efficiency, compared to the MgF.sub.2 /ZnS coating which improves J.sub.sc by 50%, V.sub.oc by 2%, and cell efficiency by 54%. This significant additional improvement results from the PECVD deposition-induced surface/defect passivation. The internal quantum efficiency (IQE) measurements showed that the PECVD SiO.sub.x /SiN coating absorbs fair amount of photons in the short-wavelength range (
    • SiN和SiOx的顺序等离子体增强化学气相沉积(PECVD)产生非常有效的双层抗反射涂层。 将该抗反射涂层与经常使用且高效的双层MgF2 / ZnS涂层进行比较。 显示双层SiOx / SiN涂层将氧化物表面的硅电池的短路电流(Jsc)提高了47%,开路电压(Voc)提高了3.7%,效率(Eff)提高了55% 钝化。 对应的MgF2 / ZnS涂层在Voc和Eff方面提供较小的改进。 然而,如果硅电池不具有氧化物钝化,则与MgF 2 / ZnS涂层相比,PECVD SiO x / SiN在电池参数方面提供了更大的改进,在Jsc中为57%,Voc为8%,效率为66% 将Jsc提高50%,Voc提高2%,电池效率提高54%。 这种显着的附加改进来自于PECVD沉积诱导的表面/缺陷钝化。 内部量子效率(IQE)测量表明,PECVD SiOx / SiN涂层在短波长范围(<500 nm)吸收了相当数量的光子,然而,改进的表面/缺陷钝化比补偿Jsc和 与MgF2 / ZnS涂层相比,电池效率提高了很多。
    • 5. 发明申请
    • NONLINEAR SIGNAL PROCESSING METHOD AND APPARATUS FOR PULSED-BASED ULTRA-WIDEBAND SYSTEM
    • 基于脉冲超声波系统的非线性信号处理方法及装置
    • US20130058381A1
    • 2013-03-07
    • US13600681
    • 2012-08-31
    • Zhizhang ChenHong NieZhimeng Xu
    • Zhizhang ChenHong NieZhimeng Xu
    • H04B1/707
    • H04B1/71637
    • A method and apparatus are provided for processing a received pulsed-based ultra-wideband (UWB) signal before the signal is demodulated by an energy detection based receiver. A nonlinear signal processing unit contains one or multiple subunits, and each subunit consists of a nonlinear device and a filter. The nonlinear devices can be any devices that can shift signal, noise, and interference spectra in a nonlinear fashion, and include but are not limited to square law devices and Teager-Kaiser operators. By applying the nonlinear signal processing unit on the received UWB signal, a major part of the energy of noise and narrowband interferences is shifted to specific frequency ranges and then removed by the appropriate filter(s) in the nonlinear signal processing unit. Thus, the signal-to-noise-plus-interference ratio (SNIR) of the received UWB signal can be improved.
    • 提供一种方法和装置,用于在由基于能量检测的接收机解调信号之前处理接收的基于脉冲的超宽带(UWB)信号。 非线性信号处理单元包含一个或多个子单元,每个子单元由非线性设备和滤波器组成。 非线性器件可以是可以以非线性方式移动信号,噪声和干扰光谱的任何器件,并且包括但不限于平方律器件和Teager-Kaiser算子。 通过对所接收的UWB信号应用非线性信号处理单元,将噪声和窄带干扰能量的主要部分移动到特定频率范围,然后通过非线性信号处理单元中的适当滤波器去除。 因此,可以提高接收的UWB信号的信噪比加干扰比(SNIR)。