会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Charged particle beam apparatus
    • 带电粒子束装置
    • US07714289B2
    • 2010-05-11
    • US12155347
    • 2008-06-03
    • Yuko SasakiMitsugu Sato
    • Yuko SasakiMitsugu Sato
    • G01N23/00
    • H01J37/265G01N23/2251H01J2237/043H01J2237/049H01J2237/28
    • When conditions for an electron gun mainly represented by extraction voltage V1 and accelerating voltage V0 are changed, a charged particle beam is once focused on a fixed position by means of a condenser lens and a virtual cathode position is calculated from a lens excitation of the condenser lens at that time and the mechanical positional relation of the electron gun to set an optical condition. For more accurate setting of the optical condition, a deflecting electrode device is provided at a crossover position of the condenser lens and a voltage is applied to the deflecting electrode device at a constant period so as to control the lens excitation of the condenser lens such that the amount of movement of an image is minimized on an image display unit such as CRT.
    • 当主要由提取电压V1和加速电压V0表示的电子枪的条件改变时,通过聚光透镜将带电粒子束一次聚焦在固定位置,并且从冷凝器的透镜激发计算虚拟阴极位置 透镜和电子枪的机械位置关系来设定光学条件。 为了更精确地设置光学条件,在聚光透镜的交叉位置处设置偏转电极装置,并且将电压以恒定周期施加到偏转电极装置,以便控制聚光透镜的透镜激发,使得 在诸如CRT的图像显示单元上图像的移动量​​最小化。
    • 3. 发明申请
    • Charged particle beam apparatus
    • 带电粒子束装置
    • US20080272300A1
    • 2008-11-06
    • US12155347
    • 2008-06-03
    • Yuko SasakiMitsugu Sato
    • Yuko SasakiMitsugu Sato
    • G01N23/00
    • H01J37/265G01N23/2251H01J2237/043H01J2237/049H01J2237/28
    • When conditions for an electron gun mainly represented by extraction voltage V1 and accelerating voltage V0 are changed, a charged particle beam is once focused on a fixed position by means of a condenser lens and a virtual cathode position is calculated from a lens excitation of the condenser lens at that time and the mechanical positional relation of the electron gun to set an optical condition. For more accurate setting of the optical condition, a deflecting electrode device is provided at a crossover position of the condenser lens and a voltage is applied to the deflecting electrode device at a constant period so as to control the lens excitation of the condenser lens such that the amount of movement of an image is minimized on an image display unit such as CRT.
    • 当主要由提取电压V 1和加速电压V 0表示的电子枪的条件改变时,通过聚光透镜将带电粒子束一次聚焦在固定位置,并且从透镜激发计算虚拟阴极位置 此时的聚光透镜和电子枪的机械位置关系来设定光学条件。 为了更精确地设置光学条件,在聚光透镜的交叉位置处设置偏转电极装置,并且将电压以恒定周期施加到偏转电极装置,以便控制聚光透镜的透镜激发,使得 在诸如CRT的图像显示单元上图像的移动量​​最小化。
    • 4. 发明申请
    • Charged Particle Beam Orbit Corrector and Charged Particle Beam Apparatus
    • 带电粒子束轨道校正器和带电粒子束装置
    • US20080116391A1
    • 2008-05-22
    • US11943241
    • 2007-11-20
    • Hiroyuki ItoYuko SasakiTohru IshitaniYoshinori Nakayama
    • Hiroyuki ItoYuko SasakiTohru IshitaniYoshinori Nakayama
    • G21K1/087G21K1/093
    • H01J37/141H01J37/09H01J37/12H01J37/153H01J37/28H01J2237/142H01J2237/1534H01J2237/303
    • The present invention relates to an orbit correction method for a charged particle beam, and aims to solve problems inherent in conventional aberration correction systems and to provide a low-cost, high-precision, high-resolution optical converging system for a charged particle beam. To this end, employed is a configuration in which a beam orbit is limited in ring zone form to form a distribution of electromagnetic field converging toward the center of a beam orbit axis. Consequently, a nonlinear action outwardly augmented, typified by spherical aberration of an electron lens, can be cancelled out. Specifically, this effect can be achieved by an electron disposed on the axis and subjected to a voltage to facilitate the occurrence of electrostatic focusing. For a magnetic field, this effect can be achieved by forming a coil radially distributed-wound on a surface equiangularly divided in the direction of rotation to control convergence of a magnetic flux density.
    • 本发明涉及一种用于带电粒子束的轨道校正方法,其目的在于解决常规像差校正系统中固有的问题,并提供一种用于带电粒子束的低成本,高精度,高分辨率的聚光系统。 为此,所采用的是波束轨道受环形形式限制以形成朝向光束轨道中心收敛的电磁场分布的结构。 因此,可以抵消以电子透镜的球面像差为代表的向外扩大的非线性动作。 具体地说,这种效果可以通过设置在轴上的电子元件实现,并且经受电压以便于静电聚焦的发生。 对于磁场,这种效果可以通过在旋转方向上等角地分割的表面上形成径向分布缠绕的线圈来实现,以控制磁通密度的收敛。
    • 8. 发明授权
    • Charged particle beam apparatus
    • 带电粒子束装置
    • US08324594B2
    • 2012-12-04
    • US12370242
    • 2009-02-12
    • Hiroyuki ItoYuko SasakiTadashi Otaka
    • Hiroyuki ItoYuko SasakiTadashi Otaka
    • G01F23/00G21K5/08G21K5/10
    • H01J37/28H01J37/20H01J37/30H01J2237/0216H01J2237/20214H01J2237/20221
    • A charged particle beam apparatus can be constructed with a smaller size (resulting in a small installation space) and a lower cost, suppress vibration, operate at higher speed, and be reliable in inspection. The charged particle beam apparatus is largely effective when a wafer having a large diameter is used. The charged particle beam apparatus includes: a plurality of inspection mechanisms, each of which is mounted on a vacuum chamber and has a charged particle beam mechanism for performing at least an inspection on the sample; a single-shaft transfer mechanism that moves the sample between the inspection mechanisms in the direction of an axis of the single-shaft transfer mechanism; and a rotary stage that mounts the sample thereon and has a rotational axis on the single-shaft transfer mechanism. The single-shaft transfer mechanism moves the sample between the inspection mechanisms in order that the sample is placed under any of the inspection mechanisms. The rotary stage positions the sample such that a target portion of the sample can be inspected by the inspection mechanism under which the sample is placed, and the inspection mechanisms inspect the sample.
    • 带电粒子束装置可以以较小的尺寸(导致小的安装空间)和较低的成本,抑制振动,更高的速度运行并且可靠地进行检查。 当使用具有大直径的晶片时,带电粒子束装置很有效。 带电粒子束装置包括:多个检查机构,每个检查机构安装在真空室上,并具有至少对样品进行检查的带电粒子束机构; 单轴传送机构,其在所述检查机构之间沿所述单轴传送机构的轴线的方向移动所述样本; 以及将样品安装在其上并在单轴传送机构上具有旋转轴的旋转台。 单轴传送机构将样品移动到检查机构之间,以便将样品放置在任何检查机构下。 旋转台定位样品,使得样品的目标部分可以通过放置样品的检查机构进行检查,检查机构检查样品。