会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Anomaly detection in images and videos
    • 图像和视频中的异常检测
    • US08724904B2
    • 2014-05-13
    • US13280896
    • 2011-10-25
    • Yuichi FujikiNorman HaasYing LiCharles A. OttoBalamanohar PaluriSharathchandra Pankanti
    • Yuichi FujikiNorman HaasYing LiCharles A. OttoBalamanohar PaluriSharathchandra Pankanti
    • G06K9/46
    • G06K9/6284B61L23/044B61L23/047B61L23/048G06K9/6218
    • A system, method, and computer program product for detecting anomalies in an image. In an example embodiment the method includes partitioning each image of a set of images into a plurality of image local units. The method further includes clustering all local units in the image set into clusters, and consequently assigning a class label to each local unit based on the clustering results. The local units with identical class labels having at least one substantially related image feature. Further, the method includes assigning a weight to each of the local units based on a variation of the class labels across all images in a set of images. The method further includes performing a clustering over all images in the set by using a distance metric that takes the learned weight of each local unit into account, then determining the images that belong to minorities of the clusters as anomalies.
    • 一种用于检测图像异常的系统,方法和计算机程序产品。 在示例实施例中,该方法包括将一组图像的每个图像划分为多个图像本地单元。 该方法还包括将图像集中的所有局部单元聚类成群集,并且因此基于聚类结果将类标签分配给每个本地单元。 具有相同类别标签的本地单元具有至少一个基本上相关的图像特征。 此外,该方法包括基于一组图像中的所有图像上的类别标签的变化来为每个本地单元分配权重。 该方法还包括通过使用考虑每个本地单元的学习权重的距离度量来执行集合中的所有图像的聚类,然后将属于集群的少数群体的图像确定为异常。
    • 7. 发明授权
    • Detection of objects in digital images
    • 检测数字图像中的物体
    • US08509526B2
    • 2013-08-13
    • US13086023
    • 2011-04-13
    • Norman HaasYing LiSharathchandra Pankanti
    • Norman HaasYing LiSharathchandra Pankanti
    • G06K9/00
    • G06K9/00818G06K9/6257
    • A system and method to detect objects in a digital image. At least one image representing at least one frame of a video sequence is received. A given color channel of the image is extracted. At least one blob that stands out from a background of the given color channel is identified. One or more features are extracted from the blob. The one or more features are provided to a plurality of pre-learned object models each including a set of pre-defined features associated with a pre-defined blob type. The one or more features are compared to the set of pre-defined features. The blob is determined to be of a type that substantially matches a pre-defined blob type associated with one of the pre-learned object models. At least a location of an object is visually indicated within the image that corresponds to the blob.
    • 一种用于检测数字图像中的对象的系统和方法。 接收表示视频序列的至少一帧的至少一个图像。 提取图像的给定颜色通道。 识别从给定颜色通道的背景中突出出的至少一个斑点。 从斑点中提取一个或多个特征。 将一个或多个特征提供给多个预先学习的对象模型,每个预先学习的对象模型包括与预定义的斑点类型相关联的一组预定义特征。 将一个或多个特征与一组预定义特征进行比较。 blob被确定为与预先识别的对象模型之一相关联的预定义blob类型的类型。 至少一个对象的位置在对应于斑点的图像内被目视指示。
    • 8. 发明授权
    • Detection of objects in digital images
    • 检测数字图像中的物体
    • US08509478B2
    • 2013-08-13
    • US13614760
    • 2012-09-13
    • Norman HaasYing LiSharathchandra Pankanti
    • Norman HaasYing LiSharathchandra Pankanti
    • G06K9/00
    • G06K9/00818G06K9/6257
    • A method to detect objects in a digital image. At least one image representing at least one frame of a video sequence is received. A given color channel of the image is extracted. At least one blob that stands out from a background of the given color channel is identified. One or more features are extracted from the blob. The one or more features are provided to a plurality of pre-learned object models each including a set of pre-defined features associated with a pre-defined blob type. The one or more features are compared to the set of pre-defined features. The blob is determined to be of a type that substantially matches a pre-defined blob type associated with one of the pre-learned object models. At least a location of an object is visually indicated within the image that corresponds to the blob.
    • 一种检测数字图像中的对象的方法。 接收表示视频序列的至少一帧的至少一个图像。 提取图像的给定颜色通道。 识别从给定颜色通道的背景中突出出的至少一个斑点。 从斑点中提取一个或多个特征。 将一个或多个特征提供给多个预先学习的对象模型,每个预先学习的对象模型包括与预定义的斑点类型相关联的一组预定义特征。 将一个或多个特征与一组预定义特征进行比较。 blob被确定为与预先识别的对象模型之一相关联的预定义blob类型的类型。 至少一个对象的位置在对应于斑点的图像内被目视指示。
    • 9. 发明授权
    • Object recognition using Haar features and histograms of oriented gradients
    • 使用Haar特征的对象识别和定向梯度的直方图
    • US08447139B2
    • 2013-05-21
    • US13085985
    • 2011-04-13
    • Weiguang GuanNorman HaasYing LiSharathchandra Pankanti
    • Weiguang GuanNorman HaasYing LiSharathchandra Pankanti
    • G06K9/62G06K9/36
    • G06K9/00818G06K9/6257
    • A system and method to detect objects in a digital image. At least one image representing at least one frame of a video sequence is received. A sliding window of different window sizes at different locations is placed in the image. A cascaded classifier including a plurality of increasingly accurate layers is applied to each window size and each location. Each layer includes a plurality of classifiers. An area of the image within a current sliding window is evaluated using one or more weak classifiers in the plurality of classifiers based on at least one of Haar features and Histograms of Oriented Gradients features. An output of each weak classifier is a weak decision as to whether the area of the image includes an instance of an object of a desired object type. A location of the zero or more images associated with the desired object type is identified.
    • 一种用于检测数字图像中的对象的系统和方法。 接收表示视频序列的至少一帧的至少一个图像。 在不同位置的不同窗口大小的滑动窗口被放置在图像中。 包括多个越来越精确的层的级联分类器被应用于每个窗口大小和每个位置。 每个层包括多个分类器。 基于Haar特征和定向梯度特征的至少一个,使用多个分类器中的一个或多个弱分类器来评估当前滑动窗口内的图像的区域。 每个弱分类器的输出是关于图像的区域是否包括期望对象类型的对象的实例的弱决定。 识别与所需对象类型相关联的零个或多个图像的位置。