会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Anomaly detection in images and videos
    • 图像和视频中的异常检测
    • US08724904B2
    • 2014-05-13
    • US13280896
    • 2011-10-25
    • Yuichi FujikiNorman HaasYing LiCharles A. OttoBalamanohar PaluriSharathchandra Pankanti
    • Yuichi FujikiNorman HaasYing LiCharles A. OttoBalamanohar PaluriSharathchandra Pankanti
    • G06K9/46
    • G06K9/6284B61L23/044B61L23/047B61L23/048G06K9/6218
    • A system, method, and computer program product for detecting anomalies in an image. In an example embodiment the method includes partitioning each image of a set of images into a plurality of image local units. The method further includes clustering all local units in the image set into clusters, and consequently assigning a class label to each local unit based on the clustering results. The local units with identical class labels having at least one substantially related image feature. Further, the method includes assigning a weight to each of the local units based on a variation of the class labels across all images in a set of images. The method further includes performing a clustering over all images in the set by using a distance metric that takes the learned weight of each local unit into account, then determining the images that belong to minorities of the clusters as anomalies.
    • 一种用于检测图像异常的系统,方法和计算机程序产品。 在示例实施例中,该方法包括将一组图像的每个图像划分为多个图像本地单元。 该方法还包括将图像集中的所有局部单元聚类成群集,并且因此基于聚类结果将类标签分配给每个本地单元。 具有相同类别标签的本地单元具有至少一个基本上相关的图像特征。 此外,该方法包括基于一组图像中的所有图像上的类别标签的变化来为每个本地单元分配权重。 该方法还包括通过使用考虑每个本地单元的学习权重的距离度量来执行集合中的所有图像的聚类,然后将属于集群的少数群体的图像确定为异常。
    • 3. 发明申请
    • ANOMALOUS PATTERN DISCOVERY
    • 异常图案发现
    • US20120237081A1
    • 2012-09-20
    • US13049032
    • 2011-03-16
    • Ankur DattaBalamanohar PaluriSharathchandra U. PankantiYun Zhai
    • Ankur DattaBalamanohar PaluriSharathchandra U. PankantiYun Zhai
    • G06K9/00
    • G06K9/00778G06K9/00785G06K9/6284
    • A trajectory of movement of an object is tracked in a video data image field that is partitioned into a plurality of different grids. Global image features from video data relative to the trajectory are extracted and compared to a learned trajectory model to generate a global anomaly detection confidence decision value as a function of fitting to the learned trajectory model. Local image features are also extracted for each of the image field grids that include object trajectory, which are compared to learned feature models for the grids to generate local anomaly detection confidence decisions for each grid as a function of fitting to the learned feature models for the grids. The global anomaly detection confidence decision value and the local anomaly detection confidence decision values for the grids are into a fused anomaly decision with respect to the tracked object.
    • 在被划分成多个不同网格的视频数据图像字段中跟踪对象的移动轨迹。 提取视频数据相对于轨迹的全局图像特征,并将其与已学习的轨迹模型进行比较,以生成与学习轨迹模型拟合的函数的全局异常检测置信判定值。 对于包括对象轨迹的每个图像场网格也提取局部图像特征,其与用于网格的学习特征模型进行比较,以针对每个网格生成局部异常检测置信决定,作为对于学习特征模型的拟合的函数, 网格 全局异常检测置信度判定值和网格的局部异常检测置信判定值相对于跟踪对象进入融合异常判定。
    • 5. 发明授权
    • Anomalous pattern discovery
    • 异常模式发现
    • US08660368B2
    • 2014-02-25
    • US13049032
    • 2011-03-16
    • Ankur DattaBalamanohar PaluriSharathchandra U. PankantiYun Zhai
    • Ankur DattaBalamanohar PaluriSharathchandra U. PankantiYun Zhai
    • G06K9/68
    • G06K9/00778G06K9/00785G06K9/6284
    • A trajectory of movement of an object is tracked in a video data image field that is partitioned into a plurality of different grids. Global image features from video data relative to the trajectory are extracted and compared to a learned trajectory model to generate a global anomaly detection confidence decision value as a function of fitting to the learned trajectory model. Local image features are also extracted for each of the image field grids that include object trajectory, which are compared to learned feature models for the grids to generate local anomaly detection confidence decisions for each grid as a function of fitting to the learned feature models for the grids. The global anomaly detection confidence decision value and the local anomaly detection confidence decision values for the grids are into a fused anomaly decision with respect to the tracked object.
    • 在被划分成多个不同网格的视频数据图像字段中跟踪对象的移动轨迹。 提取视频数据相对于轨迹的全局图像特征,并将其与已学习的轨迹模型进行比较,以生成与学习轨迹模型拟合的函数的全局异常检测置信判定值。 对于包括对象轨迹的每个图像场网格也提取局部图像特征,其与用于网格的学习特征模型进行比较,以针对每个网格生成局部异常检测置信决定,作为对于学习特征模型的拟合的函数, 网格 全局异常检测置信度判定值和网格的局部异常检测置信判定值相对于跟踪对象进入融合异常判定。