会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Integrated optical isolator using multi-mode interference structure
    • 集成光隔离器采用多模干涉结构
    • US20050094923A1
    • 2005-05-05
    • US10955980
    • 2004-09-30
    • Young-Il KimTae-Hoon YoonSeok LeeDeok-Ha WooSun-Ho KimHi-Jung KimGwan-Su LeeSung-Kyu KimMin-Chul ParkChang-Wan Son
    • Young-Il KimTae-Hoon YoonSeok LeeDeok-Ha WooSun-Ho KimHi-Jung KimGwan-Su LeeSung-Kyu KimMin-Chul ParkChang-Wan Son
    • G02B6/12G02B6/28G02B27/28G02F1/095
    • G02F1/0955G02B6/2813G02F2001/212G02F2001/217
    • The invention relates to a fabrication of an integrated optical isolator using a Multi-Mode Interference (MMI) structure and a cladding layer comprising magneto-optical material, which remove needless reflection generated in the course of light propagation and make short length integration possible. Thus, the invention uses nonreciprocal phase shift effect that optical characteristics are altered according to the direction of light propagation. In order to fabricate a light waveguide optical isolator, an input light should be separated into two light waveguides having the same power. That is, for the purpose of reducing the length of optical isolator device, the waveguide length needed to separate an input light into two light waveguides should be shortened. Since the light waveguide length of MMI structure is much shorter than the length of Mach-Zehnder light waveguide for separating an input light into two waveguides, the length of optical isolator device using MMI structure can be reduced. Moreover, since MMI structure exhibits big permissible error in fabrication, the invention has the advantage that it is simple to fabricate the device.
    • 本发明涉及使用多模干涉(MMI)结构的集成光隔离器的制造和包括磁光材料的覆层,其消除了在光传播过程中产生的不必要的反射并且使短长度集成成为可能。 因此,本发明使用不可逆相移效应,光学特性根据光传播的方向而改变。 为了制造光波导光隔离器,输入光应该分成具有相同功率的两个光波导。 也就是说,为了减小光隔离器的长度,应该缩短将输入光分成两个光波导所需的波导长度。 由于MMI结构的光波导长度比用于将输入光分离为两个波导的马赫 - 曾德尔光波导的长度短得多,所以可以减少使用MMI结构的光隔离器装置的长度。 此外,由于MMI结构在制造中表现出大的允许误差,所以本发明的优点在于制造器件是简单的。
    • 2. 发明申请
    • Integrated optical isolator
    • 集成光隔离器
    • US20050089258A1
    • 2005-04-28
    • US10955778
    • 2004-09-30
    • Young-Il KimGwan-Su LeeSeok LeeDeok-Ha WooSun-Ho KimJae-Hun KimYoung-Tae ByunSung-Kyu KimMin-Chul ParkSeok-Ho Song
    • Young-Il KimGwan-Su LeeSeok LeeDeok-Ha WooSun-Ho KimJae-Hun KimYoung-Tae ByunSung-Kyu KimMin-Chul ParkSeok-Ho Song
    • G02B6/12G02B6/26G02B27/28G02F1/095G02F1/21H01P1/36G02F1/295G02B6/42
    • G02F1/0955G02B6/2746G02B2006/12157G02F2001/212G02F2202/32
    • A semiconductor magneto-optical integrated optical isolator is realized with a Mach-Zehnder integrated optical isolator in which a cladding and a guiding layer of light waveguide are composed of magnetic material. Here, it uses nonreciprocal phase shift created when light propagation direction is changed. The fundamental element deriving this nonreciprocal phase shift is the Faraday rotation of magnetic material. Therefore, it is essential to have large Faraday rotation in order to fabricate a short length integrated optical isolator. However, since magnetic material of bulk state does not have large Faraday rotation, there need the length of several mm units for fabricating an isolator. The invention is to realize an integrated optical isolator using magneto-optical crystal in which magneto-optical material and dielectric substance have periodic structure. By the above reasons, magneto-optical crystal becomes to have bigger Faraday rotation than that of bulk state magnetic materials; thereby nonreciprocal phase shift becomes large and a short length integrated optical isolator can be fabricated. Thus, in order to reduce the device length of a Mach-Zehnder optical isolator, magneto-optical crystal having large Faraday rotation is used.
    • 用Mach-Zehnder集成光隔离器实现半导体磁光集成光隔离器,其中包层和光波导的引导层由磁性材料组成。 这里,当光传播方向改变时,使用不可逆相移。 导出这种非相互相移的基本因素是磁性材料的法拉第旋转。 因此,为了制造短长度的集成光隔离器,必须具有大的法拉第旋转。 然而,由于体状态的磁性材料不具有大的法拉第旋转,所以需要用于制造隔离器的几mm单位的长度。 本发明是实现使用磁光晶体的集成光隔离器,其中磁光材料和电介质具有周期性的结构。 由于上述原因,磁光晶体变得具有比体状磁性材料更大的法拉第旋转; 从而非相互相移变大,并且可以制造短长度的集成光隔离器。 因此,为了减小Mach-Zehnder光隔离器的器件长度,使用具有大法拉第旋转的磁光晶体。
    • 3. 发明申请
    • Embodying equipment and method for an all-optical or logic gate by using single SOA
    • 通过使用单个SOA实现全光或逻辑门的设备和方法
    • US20060092501A1
    • 2006-05-04
    • US11170178
    • 2005-06-29
    • Young Tae ByunYoung Min JhonSeok LeeDeok Ha WooSun Ho Kim
    • Young Tae ByunYoung Min JhonSeok LeeDeok Ha WooSun Ho Kim
    • H01S3/00
    • G02F3/00
    • Disclosed herein is an apparatus and method for implementing an all-optical OR logic gate. The apparatus includes an optical pulse generator, a Mode-Locked Fiber Laser (MLFL), a first optical splitter, a first optical delay line means, an optical control means, a first optical coupler, a second optical splitter, a second optical delay line means, a third optical splitter, an Erbium Doped Fiber Amplifier (EDFA), a Semiconductor Optical Amplifier (SOA), a second optical coupler, and an optical analyzer. The first optical splitter divides light output from the MLFL. The first and second optical delay line means acquire time delay. The optical control means controls intensity and polarization of the light. The first optical coupler generates the first input signal pattern as a probe signal. The second optical splitter divides light output from the first optical coupler. The third optical splitter divides the second input signal pattern. The EDFA amplifies the divided part of the second input signal pattern as a pump signal. The SOA couples the pump signal with the probe signal in opposite directions to perform the all-optical OR logic operation. The second optical coupler couples a signal output from the SOA with the second input signal pattern.
    • 这里公开了一种用于实现全光OR逻辑门的装置和方法。 该装置包括光脉冲发生器,模锁定光纤激光器(MLFL),第一光分路器,第一光延迟线装置,光控制装置,第一光耦合器,第二光分路器,第二光延迟线 意味着第三光分路器,掺铒光纤放大器(EDFA),半导体光放大器(SOA),第二光耦合器和光分析器。 第一个光分路器分配MLFL的光输出。 第一和第二光延迟线意味着获取时间延迟。 光控制装置控制光的强度和极化。 第一光耦合器产生第一输入信号模式作为探测信号。 第二光分路器分割从第一光耦合器输出的光。 第三光分路器分割第二输入信号模式。 EDFA将第二输入信号模式的分割部分放大为泵浦信号。 SOA将泵浦信号与探针信号相反的方向耦合,以执行全光OR逻辑运算。 第二光耦合器将来自SOA的信号与第二输入信号模式相耦合。
    • 4. 发明授权
    • Terahertz wave generator and method of generating high-power terahertz waves using the same
    • 太赫兹波发生器及使用其产生大功率太赫兹波的方法
    • US08198614B2
    • 2012-06-12
    • US12641006
    • 2009-12-17
    • Jae Hun KimSeok LeeDeok Ha WooSun Ho KimYoung Tae ByunYoung Min Jhon
    • Jae Hun KimSeok LeeDeok Ha WooSun Ho KimYoung Tae ByunYoung Min Jhon
    • G21K5/02
    • H01S1/06
    • The present invention relates to a terahertz wave generator and a method of generating high-power terahertz waves using the terahertz wave generator. The terahertz wave generator includes a hollow spherical body, and a focusing lens installed in a cutout portion of the spherical body or an opening formed in the cutout portion, wherein an inner surface of the spherical body is coated with metal. In the method, frequencies having different levels are incident through the focusing lens or the opening to generate a plurality of air plasmas, and the air plasmas cause continuous focusing the metal-coated inner surface and hollow space of the spherical body, thus generating high-power terahertz waves. According to the present invention, a plurality of air plasmas is continuously generated, thus solving the problem in which the light intensity of terahertz waves generated using one air plasma is low.
    • 本发明涉及太赫兹波发生器和使用太赫兹波发生器产生大功率太赫兹波的方法。 太赫兹波发生器包括中空球体和安装在球体的切口部分中的聚焦透镜或形成在切口部分中的开口,其中球体的内表面涂有金属。 在该方法中,具有不同等级的频率通过聚焦透镜或开口入射以产生多个空气等离子体,并且空气等离子体使得球形体的金属涂覆的内表面和中空空间连续聚焦, 功率太赫兹波。 根据本发明,连续地产生多个空气等离子体,从而解决了使用一个空气等离子体产生的太赫兹波的光强度低的问题。
    • 5. 发明授权
    • Apparatus and method for realizing all-optical NOR logic device using gain saturation characteristics of a semiconductor optical amplifier
    • 使用半导体光放大器的增益饱和特性来实现全光NOR逻辑器件的装置和方法
    • US07123407B2
    • 2006-10-17
    • US11039692
    • 2005-01-20
    • Young Tae ByunJae Hun KimYoung Min JhonSeok LeeDeok Ha WooSun Ho KimJong Chang Yi
    • Young Tae ByunJae Hun KimYoung Min JhonSeok LeeDeok Ha WooSun Ho KimJong Chang Yi
    • G02F3/00
    • H01S5/50G02F1/3515G02F3/00G02F2203/70H01S5/509
    • The present invention relates to an apparatus and a method for realizing all-optical NOR logic device using the gain saturation characteristics of a semiconductor optical amplifier(SOA). More particularly, the invention relates to a 10 Gbit/s all-optical NOR logic device among all-optical logic devices, in which a signal transmitted from a given point of an optical circuit such as an optical computing circuit is used as a pump signal and a probe signal.The method for realizing an all-optical NOR logic device using the gain saturation characteristics of the SOA according to the present invention comprises the steps of: utilizing A+B signal which couples together an input signal pattern A (1100) and an input signal pattern B (0110) as a pump signal (1110); utilizing a probe signal (1111) by generating a clock signal out of said input signal pattern A (1100); and obtaining a Boolean equation {overscore (A+B)} by making said probe signal and said pump signal incident upon the SOA simultaneously from the opposite direction.The all-optical logic device according to the present invention has a simple construction since it is realized through the XGM (Cross Gain Modulation) method which utilizes the gain saturation characteristics. Also, it is expected that the method employed in the present invention could be used for realizing other all-optical logic circuits and devices.
    • 本发明涉及使用半导体光放大器(SOA)的增益饱和特性实现全光NOR逻辑器件的装置和方法。 更具体地说,本发明涉及全光逻辑器件中的10Gbit / s全光NOR逻辑器件,其中从诸如光计算电路的光电路的给定点发送的信号用作泵信号 和探测信号。 使用根据本发明的SOA的增益饱和特性来实现全光NOR逻辑器件的方法包括以下步骤:利用将输入信号模式A(1100)和输入信号模式(1100)耦合在一起的A + B信号 B(0110)作为泵浦信号(1110); 通过从所述输入信号模式A(1100)产生时钟信号来利用探测信号(1111); 并通过使所述探针信号和所述泵浦信号从相反方向同时入射到SOA上而获得布尔方程(A + B)。根据本发明的全光逻辑器件具有简单的结构,因为它通过 利用增益饱和特性的XGM(交叉增益调制)方法,并且预期本发明中采用的方法可用于实现其他全光逻辑电路和装置。