会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明授权
    • Method for measuring fracture toughness of thin films
    • 测量薄膜断裂韧性的方法
    • US6053034A
    • 2000-04-25
    • US168570
    • 1998-10-09
    • Ting Y. TsuiYoung-Chang Joo
    • Ting Y. TsuiYoung-Chang Joo
    • G01N3/00G01N3/02G01N3/42G01Q60/24G01N3/48
    • G01Q60/366B82Y35/00G01N3/42G01N2203/0064G01N2203/0067G01N2203/027G01N2203/0282G01N2203/0286Y10S977/70Y10S977/856Y10S977/90
    • A nanoindentation apparatus is used to measure the in-plane fracture toughness of a thin film formed on a substrate. One or more notches are formed in the thin film. An indenter is applied to the thin film near the notch or notches and a load is applied to the indenter to force it into the thin film. Because the substrate is softer than the thin film, the indenter does not penetrate the thin film, but "sinks in" to the soft substrate. The sink in effect enhances the tensile strain and stress at the notch. In one embodiment, both the penetration of the indenter into the thin film and substrate and the load on the indenter are measured. When the thin film fractures at the notch or notches, the indenter sharply sinks into the substrate. The thin film fracture toughness is then calculated based on the value of the load and penetration at the point of fracture using either finite element analysis or an analytical model. In a second embodiment, the cross-section of the notch or notches is measured after removing the indenter which has formed an indentation in the thin film. The indenter acts as a crack extension force. The thin film fracture toughness is then calculated based upon the geometry of a crack tip at the tip of the notch and using finite element analysis, or an analytical model, such as a Crack Tip Opening Displacement (CTOD) method.
    • 纳米压痕装置用于测量在基板上形成的薄膜的面内断裂韧性。 在薄膜中形成一个或多个凹口。 将压头施加到缺口附近的薄膜或凹口,并将负载施加到压头以将其压入薄膜中。 由于衬底比薄膜柔软,所以压头不穿透薄膜,而是“沉入”到柔性衬底。 水槽有效地增强了缺口处的拉伸应变和应力。 在一个实施例中,测量压头到薄膜和基底的穿透以及压头上的载荷。 当薄膜在切口或凹口处断裂时,压头急剧下沉到基板中。 然后使用有限元分析或分析模型,基于负荷点和断裂点的穿透值计算薄膜断裂韧度。 在第二实施例中,在去除在薄膜中形成凹陷的压头之后,测量切口或切口的横截面。 压头作为裂纹扩展力。 然后基于缺口尖端处的裂纹尖端的几何形状和使用有限元分析或诸如裂纹尖端开口位移(CTOD)方法的分析模型来计算薄膜断裂韧度。
    • 9. 发明授权
    • Adhesion strength testing using a depth-sensing indentation technique
    • 使用深度感测压痕技术的粘附强度测试
    • US06339958B1
    • 2002-01-22
    • US09208843
    • 1998-12-10
    • Ting Y. TsuiYoung-Chang Joo
    • Ting Y. TsuiYoung-Chang Joo
    • G01N324
    • G01N19/04G01N3/42G01N2203/0091G01N2203/0234G01N2203/0278G01Q60/366
    • A nanoindentation apparatus is used to measure adhesion strength of a hard, thin film to a soft substrate. A variably increasing load is applied to the indenter tip. The indenter tip penetrates into the thin film at a first penetration rate and causes the thin film to sink into the substrate thus causing a tensile stress at the film substrate interface. At a critical value of the applied load, the stress at the interface exceeds the delamination value, and the thin film partially delaminates from the substrate. This causes the indenter tip to sink into the softer substrate at a sudden second, higher penetration rate. A sensor detects the applied load and the indenter tip penetration depth at this point. A computer flags the critical value of the applied load that corresponds to the increased penetration depth rate at the point of delamination of the film. The computer then calculates the critical stress required for delamination and the adhesion strength between the film and the substrate from the critical value of the applied load. The depth sensing indentation technique measurement may be carried out on a thin film integrated test element so as not to damage the rest of the thin film. The method allows non-destructive in-situ adhesion strength measurements for thin films and microelectronic devices.
    • 使用纳米压痕装置测量硬质薄膜与柔性基材的粘合强度。 可变增加的负载施加到压头。 压头尖以第一穿透速率渗入薄膜中,并使薄膜沉入基片中,从而在薄膜基底界面处产生拉伸应力。 在施加负载的临界值时,界面处的应力超过分层值,薄膜与基板部分分层。 这使得压头尖端以突然的第二次较高的穿透速率下沉到较软的基底中。 此时传感器检测施加的载荷和压头尖端的穿透深度。 计算机标记所施加的载荷的临界值,其对应于胶片分层点处的增加的穿透深度速率。 然后,计算机从所施加的负载的临界值计算分层所需的临界应力和膜与基板之间的粘附强度。 深度感测压痕技术测量可以在薄膜集成测试元件上进行,以免损坏薄膜的其余部分。 该方法允许薄膜和微电子器件的非破坏性原位粘附强度测量。
    • 10. 发明授权
    • Method for electronically measuring size of internal void in electrically conductive lead
    • 用于电子测量导电铅内部空隙尺寸的方法
    • US06242924B1
    • 2001-06-05
    • US09236844
    • 1999-01-25
    • Tsui Ting YiuYow Juang W. LiuYoung-Chang JooSunil N. Shabde
    • Tsui Ting YiuYow Juang W. LiuYoung-Chang JooSunil N. Shabde
    • H01H3102
    • G01N27/20
    • The size of an internal void in an electrically conductive lead is measured by determining its electrical resistance at a plurality of A.C. frequencies, ranging from D.C. to a frequency on the order of 50 to 100 GHz at which the majority of current flows along the skin of the lead. The test data is compared with reference data for an electrically conductive reference lead having characteristics which are essentially similar to the test lead. The difference between the two sets of data increases with the size of an internal void in the test lead. The difference will be greatest at D.C. because the current will flow through substantially the entire cross-section of the lead and the cross-sectional area will be reduced by the internal void. The test data will approach the reference data as the frequency increases because the majority of the current will flow through the skin of the test lead and will be less affected by the internal void. The surface roughness of a lead caused by surface voids is measured by determining its electrical resistance at a frequency high enough that the majority of the current flows through the skin of the lead. The distance at which the surface current flows, and thereby the resistance of the lead, increase with the surface roughness.
    • 通过确定其在多个AC频率处的电阻来测量导电引线中的内部空隙的尺寸,其范围从DC到大约50至100GHz的频率,其中大部分电流沿着皮肤 带头。 将测试数据与具有与测试引线基本相似的特性的导电参考引线的参考数据进行比较。 两组数据之间的差异随测试引线内部空隙的大小而增加。 差异在直流电中将最大,因为电流将大部分流过导线的整个横截面,横截面积将由内部空隙减小。 随着频率增加,测试数据将接近参考数据,因为大部分电流将流过测试导线的皮肤,并且将受到内部空隙的影响较小。 由表面空隙引起的铅的表面粗糙度通过以足够高的频率确定其电阻来测量,使得大部分电流流过铅的皮肤。 表面电流流动的距离,从而引线的电阻随着表面粗糙度的增加而增加。