会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 7. 发明申请
    • HIGHLY SENSITIVE CAPACITIVE SENSOR AND METHODS OF MANUFACTURING THE SAME
    • 高敏感电容传感器及其制造方法
    • US20120048019A1
    • 2012-03-01
    • US12869222
    • 2010-08-26
    • Hanqin ZhouLeyue JiangMathew VargheseHaidong Liu
    • Hanqin ZhouLeyue JiangMathew VargheseHaidong Liu
    • G01P15/125C23F1/00
    • G01P15/125G01P2015/0814
    • Micro-machined capacitive sensors implemented in micro-electro-mechanical system (MEMS) processes that have higher sensitivity, while providing an increased linear capacitive sensing range. Capacitive sensing is achieved via variable-area sensing, which employs a transduction mechanism in which the relationship between changes in the capacitance of variable, parallel-plate capacitors and displacements of a proof mass is generally linear. Each respective variable, parallel-plate capacitor is formed by a finger/electrode pair, in which both the finger and the electrode have rectangular tooth profiles that include a plurality of rectangular teeth. Because changes in the overlapping area of the finger and the electrode are multiplied by the number of rectangular teeth, while the standing capacity of the micro-machined capacitive sensor remains relatively high, the sensitivity of the micro-machined capacitive sensor employing variable-area sensing is significantly increased per unit area of the finger and the electrode.
    • 在微机电系统(MEMS)工艺中实现的微加工电容传感器具有更高的灵敏度,同时提供增加的线性电容感测范围。 通过可变区域感测实现电容感测,其采用转换机制,其中可变平行板电容器的电容变化与校准质量的位移之间的关系通常是线性的。 每个可变平行板电容器由手指/电极对形成,其中手指和电极均具有包括多个矩形齿的矩形齿廓。 由于手指和电极的重叠区域的变化乘以矩形齿的数量,而微加工的电容式传感器的静态容量保持相对较高,所以采用可变面积感测的微加工电容传感器的灵敏度 手指和电极的每单位面积显着增加。
    • 9. 发明授权
    • Multi-temperature programming for accelerometer
    • 加速度计的多温度编程
    • US07461535B2
    • 2008-12-09
    • US11365574
    • 2006-03-01
    • Feiming HuangHaidong Liu
    • Feiming HuangHaidong Liu
    • G01P21/00G01D3/028
    • G01P15/008G01P21/00
    • A system and method for testing and calibrating integrated sensor devices that improves the manufacturing test throughput of the devices. The system includes a tester, a temperature controller, and at least one probe station including a thermal chuck. The chuck can be heated to specified temperatures to achieve variable heating of a wafer, PCB, or pallet disposed thereon. The temperature controller adjusts the temperature of the chuck to a first specified level. The tester performs at least one first measurement of the output offset of each integrated sensor embodied as a die on the wafer, or as a device on the PCB or pallet. Next, the temperature controller adjusts the temperature of the chuck to a second specified level, and the tester performs at least one second measurement of the output offset of each integrated sensor at the second temperature level. The offset temperature coefficient (OTC) of each sensor is calculated based upon the output offset measurements performed at the first and second temperature levels, and optimal settings for calibrating the respective sensors are determined based upon the calculated OTC values. After the temperature of the chuck is brought back down to the first specified level, the tester programs the output offset calibration settings into each sensor.
    • 用于测试和校准集成传感器设备的系统和方法,其提高了设备​​的制造测试吞吐量。 该系统包括测试器,温度控制器和至少一个包括热卡盘的探测台。 卡盘可以被加热到指定的温度以实现其上放置的晶片,PCB或托盘的可变加热。 温度控制器将卡盘的温度调节到第一指定水平。 测试仪对作为芯片上的芯片的每个集成传感器的输出偏移进行至少一次测量,或作为PCB或托盘上的器件执行至少一次测量。 接下来,温度控制器将卡盘的温度调节到第二指定水平,并且测试仪在第二温度水平下对每个集成传感器的输出偏移进行至少一次测量。 基于在第一和第二温度水平下执行的输出偏移测量来计算每个传感器的偏移温度系数(OTC),并且基于所计算的OTC值来确定用于校准各个传感器的最佳设置。 在将卡盘的温度恢复到第一指定水平之后,测试仪将输出偏移校准设置编程到每个传感器中。
    • 10. 发明申请
    • Multi-temperature programming for accelerometer
    • 加速度计的多温度编程
    • US20070204672A1
    • 2007-09-06
    • US11365574
    • 2006-03-01
    • Feiming HuangHaidong Liu
    • Feiming HuangHaidong Liu
    • G01R17/14
    • G01P15/008G01P21/00
    • A system and method for testing and calibrating integrated sensor devices that improves the manufacturing test throughput of the devices. The system includes a tester, a temperature controller, and at least one probe station including a thermal chuck. The chuck can be heated to specified temperatures to achieve variable heating of a wafer, PCB, or pallet disposed thereon. The temperature controller adjusts the temperature of the chuck to a first specified level. The tester performs at least one first measurement of the output offset of each integrated sensor embodied as a die on the wafer, or as a device on the PCB or pallet. Next, the temperature controller adjusts the temperature of the chuck to a second specified level, and the tester performs at least one second measurement of the output offset of each integrated sensor at the second temperature level. The offset temperature coefficient (OTC) of each sensor is calculated based upon the output offset measurements performed at the first and second temperature levels, and optimal settings for calibrating the respective sensors are determined based upon the calculated OTC values. After the temperature of the chuck is brought back down to the first specified level, the tester programs the output offset calibration settings into each sensor.
    • 用于测试和校准集成传感器设备的系统和方法,其提高了设备​​的制造测试吞吐量。 该系统包括测试器,温度控制器和至少一个包括热卡盘的探测台。 卡盘可以被加热到指定的温度以实现其上放置的晶片,PCB或托盘的可变加热。 温度控制器将卡盘的温度调节到第一指定水平。 测试仪对作为芯片上的芯片的每个集成传感器的输出偏移进行至少一次测量,或作为PCB或托盘上的器件执行至少一次测量。 接下来,温度控制器将卡盘的温度调节到第二指定水平,并且测试仪在第二温度水平下对每个集成传感器的输出偏移进行至少一次测量。 基于在第一和第二温度水平下执行的输出偏移测量来计算每个传感器的偏移温度系数(OTC),并且基于所计算的OTC值来确定用于校准各个传感器的最佳设置。 在将卡盘的温度恢复到第一指定水平之后,测试仪将输出偏移校准设置编程到每个传感器中。