会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • METHOD AND APPARATUS OF INTRA MODE CODING
    • 内部模式编码的方法和装置
    • US20140119439A1
    • 2014-05-01
    • US14123201
    • 2012-04-18
    • Mei GuoXun GuoShaw-Min Lei
    • Mei GuoXun GuoShaw-Min Lei
    • H04N19/593
    • H04N19/105H04N19/00763H04N19/11H04N19/157H04N19/176H04N19/463H04N19/593H04N19/70H04N19/91
    • Method and apparatus for intra prediction mode coding and decoding are disclosed. In one embodiment, the encoding and decoding process assigns individual indices and codewords to DC mode and Planar mode respectively. The flag is set if the current intra prediction mode is equal to any of one or more neighboring intra prediction modes. Variable length codes are designed for a remaining mode set. If the flag is not set, the currently intra prediction mode is encoded using the variable length codes. In another embodiment, multiple most probable modes are used. If the current intra prediction mode is not equal to any of the multiple most probable modes, the current intra prediction mode is encoded using variable length codes designed for the corresponding remaining modes according the ranking order of the remaining modes.
    • 公开了用于帧内预测模式编码和解码的方法和装置。 在一个实施例中,编码和解码过程分别将各个索引和码字分配给DC模式和平面模式。 如果当前帧内预测模式等于一个或多个相邻帧内预测模式中的任何一个,则设置该标志。 可变长度代码是为剩余模式设计的。 如果标志未被设置,则使用可变长度码对当前帧内预测模式进行编码。 在另一个实施例中,使用多个最可能的模式。 如果当前帧内预测模式不等于多个最可能模式中的任何一个,则根据剩余模式的排序顺序,使用针对相应的剩余模式设计的可变长度码来对当前帧内预测模式进行编码。
    • 6. 发明申请
    • Method and Apparatus for Quantization Level Clipping
    • 用于量化级别剪切的方法和装置
    • US20130322527A1
    • 2013-12-05
    • US13985779
    • 2012-12-14
    • Xun GuoShaw-Min Lei
    • Xun GuoShaw-Min Lei
    • H04N7/26
    • H04N19/124H03M7/3059H04N19/126H04N19/132H04N19/136H04N19/146H04N19/18H04N19/184H04N19/44H04N19/60
    • A method and apparatus for clipping a transform coefficient are disclosed. Embodiments according to the present invention avoid overflow of the quantized transform coefficient by clipping the quantization level adaptively after quantization. In one embodiment, the method comprises generating the quantization level for the transform coefficient of a transform unit by quantizing the transform coefficient according to a quantization matrix and quantization parameter. The clipping condition is determined and the quantization level is clipped according to the clipping condition to generate a clipping-processed quantization level. The clipping condition includes a null clipping condition. The quantization level is clipped to fixed-range represented in n bits for the null clipping condition, where n correspond to 8, 16, or 32. The quantization level may also be clipped within a range from −m to m−1 for the null clipping condition, where m may correspond to 128, 32768, or 2147483648.
    • 公开了一种用于剪切变换系数的方法和装置。 根据本发明的实施例通过量化后自适应地削减量化电平来避免量化变换系数的溢出。 在一个实施例中,该方法包括通过根据量化矩阵和量化参数量化变换系数来产生变换单元的变换系数的量化级。 确定剪切条件,并根据剪切条件限制量化级别,以产生削波处理的量化级别。 剪切条件包括零剪切条件。 量化电平被削减到用于零削波条件的n位表示的固定范围,其中n对应于8,16或32。量化电平也可以在-m至m-1的范围内被修剪为零 剪切条件,其中m可以对应于128,32768或2147483648。
    • 7. 发明授权
    • Non-invasive disease diagnosis using light scattering probe
    • 使用光散射探针的非侵入性疾病诊断
    • US08031335B2
    • 2011-10-04
    • US12176383
    • 2008-07-20
    • Hong WangXun Guo
    • Hong WangXun Guo
    • G01J3/44
    • G01J3/44G01J3/02G01J3/021G01N21/658G08B21/12
    • A method for non-invasive detection of a disease, a status of illicit-drug use, or smoking status includes transferring a body fluid obtained from a patient to a sensor comprising a nano-scale surface structure to allow the body fluid to come in contact with the nano-scale surface structure, illuminating the body fluid and the nano-scale surface structure by a laser beam, scattering the laser beam by the body fluid and the nano-scale surface structure to produce a scattered light, and analyzing the scattered light using a spectral analyzer to diagnose a disease, the status of illicit-drug use, or smoking status in the patient.
    • 用于非侵入性检测疾病,非法药物使用状况或吸烟状态的方法包括将从患者获得的体液转移到包括纳米级表面结构的传感器以允许体液接触 通过纳米级表面结构,通过激光照射体液和纳米级表面结构,通过体液和纳米级表面结构散射激光束产生散射光,并分析散射光 使用光谱分析仪诊断疾病,非法药物使用状况或患者的吸烟状况。
    • 9. 发明授权
    • Plasmonic laser nanoablation methods
    • 等离子激光纳米消融方法
    • US07834331B2
    • 2010-11-16
    • US12184628
    • 2008-08-01
    • Adela Ben-YakarDaniel EversoleXun Guo
    • Adela Ben-YakarDaniel EversoleXun Guo
    • A61N5/00A61F7/12
    • A61B18/20A61B5/0059B23K26/0624B23K2103/32B23K2103/50Y10S428/913
    • A novel femtosecond laser nano-ablation technique called Plasmonic Laser Nano-Ablation (PLN). The technique takes advantage of surface-enhanced plasmonic scattering of ultrashort laser pulses by nanoparticles to vaporize sub-cellular structures in attoliter volumes. The use of nanoparticles may overcome problems associated with current FLMS techniques and does not rely on heating for nanodisruption. In PLN, the particle acts as a “nano-lens,” restricting laser light to the near-field of the particle, and only photodisrupting structures that are nanometers away. This eliminates the need for a tightly focused beam, while still achieving nanoscale ablation resolution. Moreover, the enhanced scattering around the particles reduces the amount of required laser fluence. A method is provided comprising positioning a nanoparticle in proximity to a surface of a material; irradiating the nanoparticle with a laser tuned close to the nanoparticle's plasmonic frequency; and allowing a near-field effect from the irradiated nanoparticle to photodamage the material.
    • 一种新颖的飞秒激光纳米消融技术,称为等离子体激光纳米消融(PLN)。 该技术利用纳米颗粒的超短激光脉冲的表面增强等离子体激发散射来以甲酰胺体积蒸发亚细胞结构。 使用纳米颗粒可以克服与当前FLMS技术相关的问题,并且不依赖于加热用于纳米破坏。 在PLN中,粒子作为“纳米透镜”,将激光限制在粒子的近场,并且只有纳米远的光致断层结构。 这消除了对紧密聚焦光束的需要,同时仍然实现纳米尺度的消融分辨率。 此外,颗粒周围的增强散射减少了所需的激光注量。 提供了一种方法,包括将纳米颗粒定位在材料表面附近; 用接近纳米颗粒等离子体激发频率的激光照射纳米颗粒; 并且允许来自照射的纳米颗粒的近场效应对材料进行光损伤。
    • 10. 发明申请
    • INTEGRATED CHEMICAL SEPARATION LIGHT SCATTERING DEVICE
    • 集成化学分离光散射装置
    • US20080309918A1
    • 2008-12-18
    • US11761453
    • 2007-06-12
    • Xun GuoHong Wang
    • Xun GuoHong Wang
    • G01N21/00
    • G01N21/65G01N21/658
    • An integrated chemical separation device includes a single device body, a chemical separation unit configured to separate a chemical from a fluid, a Raman sensor substrate comprising one or more surfaces configured to be adsorbed by molecules of the chemical from the fluid, and a Raman scattering spectrometer unit that can emit a laser beam to illuminate the Raman sensor substrate and to detect the chemical from the light scattered from the Raman sensor substrate. The chemical separation unit, the Raman sensor substrate, and the Raman scattering spectrometer unit are held in or mounted to the single device body.
    • 集成的化学分离装置包括单个装置主体,被配置为将化学品与流体分离的化学分离单元,包括被配置为被来自流体的化学物质的分子吸附的一个或多个表面的拉曼传感器基板以及拉曼散射 可以发射激光束照射拉曼传感器基板并从拉曼传感器基板散射的光中检测化学物质的光谱仪单元。 化学分离单元,拉曼传感器基板和拉曼散射光谱仪单元被保持在或安装到单个设备主体。