会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Detecting asymmetrical transistor leakage defects
    • 检测不对称晶体管漏电缺陷
    • US08294485B2
    • 2012-10-23
    • US12699211
    • 2010-02-03
    • Xu OuyangYun-Yu WangYunsheng Song
    • Xu OuyangYun-Yu WangYunsheng Song
    • G01R31/02G01R31/08
    • H01L27/1104G11C11/41G11C29/50G11C2029/5006H01L22/34H01L2924/0002H01L2924/3011H01L2924/00
    • A method of detecting low-probability defects in large transistor arrays (such as large arrays of SRAM cells), where the defects manifest themselves as asymmetrical leakage in a transistor (such as a pulldown nFET in an SRAM cell). These defects are detected by creating one or more test arrays, identical in all regards to the large transistor arrays up until the contact and metallization layers. Leakage is measured by applying an appropriate off-state voltage (e.g., 0V) by a common connection to all of the gates of the transistors in the test array, then measuring the aggregate drain/source leakage current, both forward and reverse (e.g., first grounded source and positively biased drain, then grounded drain and positively biased source) comparing the difference between the two leakage current measurements.
    • 检测大晶体管阵列(例如大量SRAM单元阵列)中的低概率缺陷的方法,其中缺陷在晶体管(例如,SRAM单元中的下拉nFET)中表现为非对称泄漏。 通过创建一个或多个测试阵列来检测这些缺陷,所有这些测试阵列在大量晶体管阵列上相同,直到接触和金属化层。 通过与测试阵列中的晶体管的所有栅极的公共连接施加适当的截止状态电压(例如,0V)来测量泄漏,然后测量正向和反向的汇总漏极/漏极电流(例如, 第一接地源和正偏置漏极,然后接地漏极和正偏置源)比较两个漏电流测量值之间的差异。
    • 2. 发明授权
    • Geometry based electrical hotspot detection in integrated circuit layouts
    • 集成电路布局中基于几何的电热点检测
    • US08108803B2
    • 2012-01-31
    • US12603594
    • 2009-10-22
    • Fook-Luen HengXu OuyangYunsheng SongYun-Yu Wang
    • Fook-Luen HengXu OuyangYunsheng SongYun-Yu Wang
    • G06F17/50
    • G06F17/5081G06F2217/16
    • A method of failure detection of an integrated circuit (IC) layout includes determining a critical path distance between a first geometric feature of the IC layout and a second geometric feature of the IC layout; and comparing the determined critical path distance to a defined minimum critical path distance between the first and second geometric features, wherein the defined minimum critical path distance corresponds to a desired electrical property of the IC layout, independent of any geometric-based ground rule minimum distance for the IC layout; identifying any determined critical path distances that are less than the defined minimum critical path distance as a design violation; and modifying the IC layout by eliminating the identified design violations.
    • 集成电路(IC)布局的故障检测方法包括确定IC布局的第一几何特征与IC布局的第二几何特征之间的关键路径距离; 以及将所确定的关键路径距离与所述第一和第二几何特征之间的限定的最小关键路径距离进行比较,其中所述限定的最小关键路径距离对应于所述IC布局的所需电气特性,独立于任何基于几何的基准规则最小距离 用于IC布局; 识别小于定义的最小关键路径距离的任何确定的关键路径距离作为设计违规; 并通过消除所识别的设计违规来修改IC布局。
    • 3. 发明申请
    • GEOMETRY BASED ELECTRICAL HOTSPOT DETECTION IN INTEGRATED CIRCUIT LAYOUTS
    • 集成电路中基于几何的电气检测
    • US20110099529A1
    • 2011-04-28
    • US12603594
    • 2009-10-22
    • Fook-Luen HengXu OuyangYunsheng SongYun-Yu Wang
    • Fook-Luen HengXu OuyangYunsheng SongYun-Yu Wang
    • G06F17/50
    • G06F17/5081G06F2217/16
    • A method of failure detection of an integrated circuit (IC) layout includes determining a critical path distance between a first geometric feature of the IC layout and a second geometric feature of the IC layout; and comparing the determined critical path distance to a defined minimum critical path distance between the first and second geometric features, wherein the defined minimum critical path distance corresponds to a desired electrical property of the IC layout, independent of any geometric-based ground rule minimum distance for the IC layout; identifying any determined critical path distances that are less than the defined minimum critical path distance as a design violation; and modifying the IC layout by eliminating the identified design violations.
    • 集成电路(IC)布局的故障检测方法包括确定IC布局的第一几何特征与IC布局的第二几何特征之间的关键路径距离; 以及将所确定的关键路径距离与所述第一和第二几何特征之间的限定的最小关键路径距离进行比较,其中所述限定的最小关键路径距离对应于所述IC布局的所需电气特性,独立于任何基于几何的基准规则最小距离 用于IC布局; 识别小于定义的最小关键路径距离的任何确定的关键路径距离作为设计违规; 并通过消除所识别的设计违规来修改IC布局。
    • 4. 发明申请
    • DETECTING ASYMMETRICAL TRANSISTOR LEAKAGE DEFECTS
    • 检测不对称晶体管漏电缺陷
    • US20100201376A1
    • 2010-08-12
    • US12699211
    • 2010-02-03
    • Xu OuyangYun-Yu WangYunsheng Song
    • Xu OuyangYun-Yu WangYunsheng Song
    • H01H31/12
    • H01L27/1104G11C11/41G11C29/50G11C2029/5006H01L22/34H01L2924/0002H01L2924/3011H01L2924/00
    • A method of detecting low-probability defects in large transistor arrays (such as large arrays of SRAM cells), where the defects manifesting themselves as asymmetrical leakage in a transistor (such as a pulldown nFET in an SRAM cell). These defects are detected by creating one or more test arrays, identical in all regards to the large transistor arrays up until the contact and metallization layers. The test array(s) is (are) disposed side-by-side with the “normal” array(s) on the same reticle so that process variations that affect the normal array will also affect the test array. The contact and metallization layers for the test array are adapted to connect groups (sub-blocks) of transistors together in parallel for leakage testing. The group size is chosen to ensure that the leakage current associated with a single defective transistor is significantly greater than the aggregate leakage current associated with all of non-defective transistors in the group. Leakage is measured by applying an appropriate off-state voltage (e.g., 0V) by a common connection to all of the gates of the transistors in the test array, then measuring the aggregate drain/source leakage current, both forward and reverse (e.g., first grounded source and positively biased drain, then grounded drain and positively biased source) comparing the difference between the two leakage current measurements. The sub-blocks (groups) may be tested one at a time using a sub-block selection decoder to select the sub-block being tested.
    • 检测大晶体管阵列(例如大型SRAM单元阵列)中的低概率缺陷的方法,其中缺陷在晶体管(例如SRAM单元中的下拉nFET)中表现为非对称泄漏。 通过创建一个或多个测试阵列来检测这些缺陷,所有这些测试阵列在大量晶体管阵列上相同,直到接触和金属化层。 测试阵列与同一分划板上的“正常”阵列并排设置,从而影响正常阵列的过程变化也会影响测试阵列。 用于测试阵列的接触和金属化层适于将晶体管的组(子块)并联连接在一起用于泄漏测试。 选择组尺寸以确保与单个缺陷晶体管相关联的漏电流明显大于与组中的所有无缺陷晶体管相关的总漏电流。 通过与测试阵列中的晶体管的所有栅极的公共连接施加适当的截止状态电压(例如,0V)来测量泄漏,然后测量正向和反向的汇总漏极/漏极电流(例如, 第一接地源和正偏置漏极,然后接地漏极和正偏置源)比较两个漏电流测量值之间的差异。 可以使用子块选择解码器一次一个地测试子块(组),以选择被测试的子块。
    • 8. 发明授权
    • Metal cap for interconnect structures
    • 用于互连结构的金属盖
    • US07790599B2
    • 2010-09-07
    • US11734958
    • 2007-04-13
    • Chih-Chao YangPing-Chuan WangYun-Yu Wang
    • Chih-Chao YangPing-Chuan WangYun-Yu Wang
    • H01L21/4763
    • H01L21/76814H01L21/76805H01L21/76843H01L21/76849
    • A structure and method of forming an improved metal cap for interconnect structures is described. The method includes forming an interconnect feature in an upper portion of a first insulating layer; deposing a dielectric capping layer over the interconnect feature and the first insulating layer; depositing a second insulating layer over the dielectric capping layer; etching a portion of the second insulating layer to form a via opening, wherein the via opening exposes a portion of the interconnect feature; bombarding the portion of the interconnect feature for defining a gauging feature in a portion of the interconnect feature; etching the via gauging feature for forming an undercut area adjacent to the interconnect feature and the dielectric capping layer; depositing a noble metal layer, the noble metal layer filling the undercut area of the via gauging feature to form a metal cap; and depositing a metal layer over the metal cap.
    • 描述了形成用于互连结构的改进的金属帽的结构和方法。 该方法包括在第一绝缘层的上部形成互连特征; 在所述互连特征和所述第一绝缘层上方覆盖介电覆盖层; 在所述电介质覆盖层上沉积第二绝缘层; 蚀刻所述第二绝缘层的一部分以形成通孔开口,其中所述通孔开口暴露所述互连特征的一部分; 轰击互连特征的部分以在互连特征的一部分中定义测量特征; 蚀刻通孔测量特征,用于形成邻近互连特征和电介质覆盖层的底切区域; 沉积贵金属层,所述贵金属层填充通孔测量特征的底切区域以形成金属盖; 以及在所述金属盖上沉积金属层。