会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明授权
    • Method for fabricating a dual material gate of a short channel field
effect transistor
    • 短沟道场效应晶体管的双材料栅极的制造方法
    • US6153534A
    • 2000-11-28
    • US361826
    • 1999-07-27
    • Wei LongQi XiangYowjuang W. Liu
    • Wei LongQi XiangYowjuang W. Liu
    • H01L21/28H01L21/336H01L29/10H01L29/49H01L21/302H01L21/461
    • H01L29/66659H01L21/28105H01L21/2815H01L29/1054H01L29/4983H01L21/2807
    • A dual material gate is effectively fabricated for a field effect transistor having a short channel length of submicron and nanometer dimensions such that disadvantageous short channel effects are minimized. Generally, the method of the present invention includes a step of forming a first material gate portion on a gate dielectric. The first material gate portion has a source side and a drain side, and an aspect of the present invention further includes the step of depositing a spacer dielectric layer on the source side and the drain side of the first material gate portion. An aspect of the present invention also includes the step of implanting heavy ions into the spacer dielectric layer at an angle such that the spacer dielectric layer at the drain side of the first material gate portion is substantially not implanted with the heavy ions. The spacer dielectric layer is then selectively etched such that any portion of the spacer dielectric layer that is implanted with the heavy ions is etched. Thus, the spacer dielectric layer on the drain side of the first material gate portion is not etched, but the spacer dielectric layer on the source side of the first material gate portion is etched. In addition, an aspect of the present invention includes a step of selectively growing a second material gate portion from the first material gate portion that is exposed on the source side of the first material gate portion. In this manner, the dual material gate of the field effect transistor is comprised of the first material gate portion toward the drain of the field effect transistor and the second material gate portion toward the source of the field effect transistor.
    • 对于具有亚微米和纳米尺寸的短沟道长度的场效应晶体管有效地制造双材料栅极,使得不利的短沟道效应最小化。 通常,本发明的方法包括在栅极电介质上形成第一材料栅极部分的步骤。 第一材料栅极部分具有源极侧和漏极侧,并且本发明的一个方面还包括在第一材料栅极部分的源极侧和漏极侧上沉积间隔电介质层的步骤。 本发明的一个方面还包括以一定角度将重离子注入到间隔电介质层中的步骤,使得第一材料栅极部分的漏极侧的间隔电介质层基本上不被重离子注入。 然后选择性地蚀刻间隔电介质层,使得蚀刻注入了重离子的间隔电介质层的任何部分。 因此,第一材料栅极部分的漏极侧的间隔物电介质层未被蚀刻,而是蚀刻第一材料栅极部分的源极侧的间隔物电介质层。 此外,本发明的一个方面包括从第一材料栅极部分选择性地生长第二材料栅极部分的步骤,该第一材料栅极部分暴露在第一材料栅极部分的源极侧。 以这种方式,场效应晶体管的双材料栅极包括朝向场效应晶体管的漏极的第一材料栅极部分和朝向场效应晶体管的源极的第二材料栅极部分。
    • 6. 发明授权
    • Determination of parasitic capacitance between the gate and drain/source local interconnect of a field effect transistor
    • 确定场效应晶体管的栅极和漏极/源局部互连之间的寄生电容
    • US06169302A
    • 2001-01-02
    • US09361698
    • 1999-07-27
    • Wei LongQi XiangYowjuang W. Liu
    • Wei LongQi XiangYowjuang W. Liu
    • H01L2358
    • H01L22/34H01L23/5222H01L2924/0002H01L2924/00
    • The present invention accurately determines a first parasitic capacitance component between a conductive gate region to a drain local interconnect of a real field effect transistor, and determines a second parasitic capacitance component between the conductive gate region to a source local interconnect of the real field effect transistor. A virtual field effect transistor is fabricated on a dielectric in order to determine the parasitic capacitance component between just the gate and the drain or source local interconnect of the real field effect transistor. The virtual field effect transistor includes a virtual drain local interconnect, a virtual source local interconnect, and a virtual conductive gate region fabricated on the dielectric with a respective size and positions relative to each other that are substantially the same as that of the drain and source local interconnects and the gate, respectively, of the real field effect transistor. In this manner, the first parasitic capacitance component between the conductive gate region of the real field effect transistor to the drain local interconnect of the real field effect transistor is a first capacitance measured between the virtual conductive gate region and the virtual drain local interconnect of the virtual field effect transistor of the present invention. Similarly, the second parasitic capacitance component between the conductive gate region of the real field effect transistor to the source local interconnect of the real field effect transistor is a second capacitance measured between the virtual conductive gate region and the virtual source local interconnect of the virtual field effect transistor of the present invention.
    • 本发明精确地确定实际场效应晶体管的导电栅极与漏极局部互连之间的第一寄生电容分量,并且确定导电栅区与实场效应晶体管的源局部互连之间的第二寄生电容分量 。 在电介质上制造虚拟场效应晶体管,以便确定真实场效应晶体管的栅极和漏极或源局部互连之间的寄生电容分量。 虚拟场效应晶体管包括虚拟漏极局部互连,虚拟源局部互连和在电介质上制造的虚拟导电栅极区域,该虚拟导电栅极区域具有与漏极和源极基本上相同的尺寸和位置 分别是实际场效应晶体管的局部互连和栅极。 以这种方式,实际场效应晶体管的导电栅极区域与实场效应晶体管的漏极局部互连之间的第一寄生电容分量是在虚拟导电栅极区域和虚拟漏极局部互连之间测量的第一电容 虚拟场效应晶体管。 类似地,实场效应晶体管的导电栅极区域与实场效应晶体管的源局部互连之间的第二寄生电容分量是在虚拟导电栅极区域和虚拟场虚拟源局部互连之间测量的第二电容 效应晶体管。
    • 7. 发明授权
    • Method for measuring gate length and drain/source gate overlap
    • 测量栅极长度和漏极/源极栅极重叠的方法
    • US6166558A
    • 2000-12-26
    • US237540
    • 1999-01-26
    • Chun JiangWei LongZicheng G. LingYowjuang W. Liu
    • Chun JiangWei LongZicheng G. LingYowjuang W. Liu
    • H01L21/66H01L29/78
    • H01L22/12
    • The invention provides a method and apparatus for calculating gate length and source/drain gate overlap, by measuring gate capacitance. The invention uses previously known fringe capacitance C.sub.fr and unit capacitance C.sub.OX. The invention measures gate capacitance C.sub.g, when the gate is accumulatively biased, and solves for overlap capacitance C.sub.OV using the equation C.sub.OV =(C.sub.g -2C.sub.fr)/2 or C.sub.OV =(C.sub.gg -C.sub.gb -2C.sub.fr)/2. The invention then measures the gate capacitance C.sub.g when the gate to source/drain voltage is set to inversion bias and a zero voltage is applied between the source/drain and the substrate, and solves for the channel capacitance C.sub.ch using the equation C.sub.ch =C.sub.g -2C.sub.fr -2C.sub.OV. The invention calculates the channel capacitance C.sub.ch where C.sub.ch =C.sub.g -2C.sub.fr -2C.sub.OV and then calculates gate length where gate length L.sub.g =(2C.sub.OV +C.sub.ch)/C.sub.OX and the effective gate length L.sub.eff =C.sub.ch /C.sub.OX. The invention further calculates source/drain gate overlap L.sub.OV, by setting L.sub.OV =C.sub.OV /C.sub.OX.
    • 本发明提供了一种通过测量栅极电容来计算栅极长度和源极/漏极栅极重叠的方法和装置。 本发明使用先前已知的边缘电容Cfr和单位电容COX。 本发明在栅极被累积偏置时测量栅极电容Cg,并使用公式COV =(Cg-2Cfr)/ 2或COV =(Cgg-Cgb-2Cfr)/ 2求解重叠电容COV。 然后,当栅极/源极/漏极电压被设置为反向偏压并且在源极/漏极和衬底之间施加零电压,并且使用公式Cch = Cg-1求解沟道电容Cch时,本发明测量栅极电容Cg。 2Cfr-2COV。 本发明计算Cch = Cg-2Cfr-2COV的沟道电容Cch,然后计算栅极长度Lg =(2COV + Cch)/ COX和有效栅极长度Leff = Cch / COX的栅极长度。 本发明通过设定LOV = COV / COX,进一步计算源极/漏极栅极重叠LOV。
    • 10. 发明授权
    • STI (Shallow Trench Isolation) structures for minimizing leakage current through drain and source silicides
    • STI(浅沟槽隔离)结构,用于通过漏极和源极硅化物最小化漏电流
    • US06420770B1
    • 2002-07-16
    • US09882244
    • 2001-06-15
    • Qi XiangWei LongMing-Ren Lin
    • Qi XiangWei LongMing-Ren Lin
    • H01L2900
    • H01L29/665H01L21/76224
    • STI (Shallow Trench Isolation) structures are fabricated such that leakage current is minimized through a field effect transistor fabricated between the STI structures. The shallow trench isolation structure include a pair of isolation trenches, with each isolation trench being etched through a semiconductor substrate. A first dielectric material fills the pair of isolation trenches and extends from the isolation trenches such that sidewalls of the first dielectric material filling the isolation trenches are exposed beyond the top of the semiconductor substrate. A second dielectric material is deposited on the sidewalls of the first dielectric material exposed beyond the top of the semiconductor substrate. The second dielectric material has a different etch rate in an acidic solution from the first dielectric material filling the isolation trenches. The present invention may be used to particular advantage when the first dielectric material filling up the isolation trenches is comprised of silicon dioxide, and when the second dielectric material deposited on the sidewalls of the first dielectric material is comprised of silicon nitride. With the protective silicon nitride covering the sidewalls of the silicon dioxide filling the STI (shallow trench isolation) trenches, formation of divots is avoided in the silicon dioxide filling the STI (shallow trench isolation) trenches. Thus, when a field effect transistor is fabricated between such STI structures, silicides formed near the STI structures do not extend down toward the junction of the drain contact region and the source contact region of the field effect transistor such that drain and source leakage current is minimized.
    • 制造STI(浅沟槽隔离)结构,使得通过在STI结构之间制造的场效应晶体管使漏电流最小化。 浅沟槽隔离结构包括一对隔离沟槽,每个隔离沟槽通过半导体衬底被蚀刻。 第一介电材料填充一对隔离沟槽并从隔离沟槽延伸,使得填充隔离沟槽的第一介电材料的侧壁暴露在半导体衬底的顶部之外。 第二电介质材料沉积在暴露于半导体衬底的顶部之外的第一电介质材料的侧壁上。 第二电介质材料在从填充隔离沟槽的第一介电材料的酸性溶液中具有不同的蚀刻速率。 当填充隔离沟槽的第一介电材料由二氧化硅组成并且当沉积在第一介电材料的侧壁上的第二介电材料由氮化硅构成时,本发明可以被用于特别有利。 通过覆盖填充STI(浅沟槽隔离)沟槽的二氧化硅的侧壁的保护性氮化硅,在填充STI(浅沟槽隔离)沟槽的二氧化硅中避免形成纹理。 因此,当在这样的STI结构之间制造场效应晶体管时,形成在STI结构附近的硅化物不会朝向场效应晶体管的漏极接触区域和源极接触区域的接点向下延伸,使得漏极和漏极电流为 最小化。