会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Acoustic Doppler downhole fluid flow measurement
    • 声学多普勒井下流体流量测量
    • US06829947B2
    • 2004-12-14
    • US10437597
    • 2003-05-14
    • Wei HanJean M. BeiqueJames R. BirchakAlan T. HemphillTim WiemersPaul F. Rodney
    • Wei HanJean M. BeiqueJames R. BirchakAlan T. HemphillTim WiemersPaul F. Rodney
    • G01F120
    • G01P5/241E21B47/01E21B47/101G01F1/663G01N29/024G01N29/036G01N2291/02836G01N2291/105
    • apparatus and system are disclosed for in situ measurement of downhole fluid flow using Doppler techniques. First, a baseline speed of sound is established as close to the desired measurement point as possible. This speed of sound measurement is then used in Doppler calculations for determining flow velocities based from induced Doppler shift resulting from fluid flow. A heterodyne receiver arrangement is preferably used for processing so that the flow direction can be determined and the detection sensitivity for low flow velocities can be enhanced. From in situ measurements, well kicks may be spotted and dealt with in real-time. In addition, current theoretical models of rheological properties may be verified and expounded upon using in situ downhole measurement techniques. Furthermore, the velocity measurements described herein can be used to recognize downhole lost circulation and/or gas/water/oil influxes as early as possible, even when the mud recirculation pumps are turned off.
    • 公开了使用多普勒技术进行井下流体流的原位测量的装置和系统。 首先,将基线速度建立为尽可能接近所需的测量点。 然后将这种声速测量用于多普勒计算,用于根据由流体流动引起的诱导多普勒频移来确定流速。 外差接收器装置优选用于处理,从而可以确定流动方向,并且可以提高低流速的检测灵敏度。 从现场测量,可以发现并处理好踢球。 此外,现有的流变特性的理论模型可以在使用原位井下测量技术时得到验证和阐述。 此外,即使当泥浆再循环泵被关闭时,本文所述的速度测量也可以用于尽可能早地识别井下漏液循环和/或气/水/油流入。
    • 6. 发明授权
    • Method of fluid rheology characterization and apparatus therefor
    • 流体流变学表征方法及其设备
    • US06378357B1
    • 2002-04-30
    • US09524976
    • 2000-03-14
    • Wei HanJohn W. MinearRonnie G. MorganJames R. Birchak
    • Wei HanJohn W. MinearRonnie G. MorganJames R. Birchak
    • G01N1100
    • G01N29/345G01F1/663G01N11/16G01N29/036G01N29/343G01N29/38G01N2011/0073G01N2291/017G01N2291/02818G01N2291/02836G01N2291/102
    • There is disclosed herein a method and apparatus that use ultrasonic signals to measure rheological properties of a fluid flow such as, e.g., the consistency index K, the flow behavior index n′, the yield stress &tgr;0, or other parameters of any given model for shear rate dependent viscosity &eegr;. In one embodiment, the method includes: (a) transmitting an acoustic signal into the fluid flow; (b) receiving acoustic reflections from acoustic reflectors entrained in the fluid flow; (c) determining a Doppler shift of the acoustic reflections in a set of time windows corresponding to a set of desired sampling regions in the fluid flow; and (d) analyzing the Doppler shifts associated with the set of sampling regions to determine one or more rheological properties of the fluid flow. The frequency shift caused by motion of the fluid is proportional to the velocity of the fluid, and this allows the construction of a velocity profile of the fluid flow stream. The velocity profile can be normalized and “matched” to one of a family of velocity profile templates, and the rheological properties identified by the curve that matches best. Alternatively, the shear rate as a function of shear stress can be calculated from the measurements, and these values may be used to find each of the parameters directly. In one embodiment, the apparatus includes a transmitter, a receiver, and an electronic module. The transmitter transmits an acoustic signal into the fluid flow. The receiver receives reflections of the acoustic signal from entrained acoustic reflection sources in the fluid flow. The electronic module is coupled to the transmitter and receiver, and is configured to provide a pulsed high frequency signal to the transmitter and, responsive to the signal from the receiver, to determine a velocity vs. position profile of the fluid flow.
    • 这里公开了一种方法和装置,其使用超声信号来测量流体流动的流变特性,例如一致性指数K,流动行为指数n',屈服应力< 0或任何给定的其他参数 剪切速率依赖粘度等级模型 在一个实施例中,该方法包括:(a)将声信号传输到流体流中; (b)从夹带在流体流中的声反射器接收声反射; (c)确定在一组对应于所述流体流中期望的采样区域的时间窗口中的声反射的多普勒频移; 以及(d)分析与该组采样区域相关联的多普勒频移,以确定流体流动的一个或多个流变特性。 由流体运动引起的频率偏移与流体的速度成比例,这允许构建流体流动流的速度分布。 速度分布可以归一化,并与一系列速度分布模板中的一个进行归一化,并且通过曲线确定的最佳匹配的流变特性。 或者,可以从测量中计算作为剪切应力的函数的剪切速率,并且可以使用这些值来直接找到每个参数。 在一个实施例中,该装置包括发射器,接收器和电子模块。 发射器将声信号发送到流体流中。 接收器接收来自流体流中夹带的声反射源的声信号的反射。 电子模块耦合到发射器和接收器,并且被配置为向发射器提供脉冲高频信号,并且响应于来自接收器的信号来确定流体流的速度与位置分布。
    • 7. 发明授权
    • Acoustic sensor for pipeline deposition characterization and monitoring of pipeline deposits
    • 用于管道沉积表征和监测管道沉积物的声学传感器
    • US06701787B2
    • 2004-03-09
    • US10223505
    • 2002-08-19
    • Wei HanVimal V. ShahJames R. BirchakBruce H. StormRajnikant M. AminBayram KalpakciFouad Fleyfel
    • Wei HanVimal V. ShahJames R. BirchakBruce H. StormRajnikant M. AminBayram KalpakciFouad Fleyfel
    • G01N2900
    • G01N29/2437G01B17/02G01N29/041G01N29/2468G01N29/28G01N2291/02854G01N2291/0421G01N2291/0422G01N2291/2634
    • A method and apparatus for analyzing a deposited layer on the inner surface of a fluid container wall having inner and outer surfaces are disclosed. One embodiment of the method comprises (a) transmitting an acoustic signal from a transmitter at a first distance from the outer surface of the wall; (b) receiving a first received signal A, comprising a reflection from the wall outer surface; (c) receiving a second received signal B, comprising a reflection from the wall inner surface; (d) receiving a third received signal C from the wall inner surface; (e) calculating a coefficient Rwp from A, B and C, and (f) calculating a coefficient Rpd from A, B and Rwp, and calculating the acoustic impedance of the deposited layer Zd from Rwp, Rpd, and Zw, where Zw is the acoustic impedance of the material between the transmitter and the wall outer surface. A preferred embodiment of the apparatus comprises a piezoelectric or ferroelectric transducer having front and back faces; a backing member acoustically coupled to said transducer back face and impedance-matched to said transducer element, said backing member having proximal and remote faces; and a delay material disposed between said transducer front face and the wall outer surface.
    • 公开了一种用于分析具有内表面和外表面的流体容器壁的内表面上的沉积层的方法和装置。 该方法的一个实施例包括(a)从距离壁的外表面第一距离的发射器发射声信号; (b)接收第一接收信号A,包括来自所述壁外表面的反射; (c)接收第二接收信号B,其包括来自所述壁内表面的反射; (d)从所述壁内表面接收第三接收信号C; (e)从A,B和C计算系数Rwp,以及(f)从A,B和Rwp计算系数Rpd,并从Rwp,Rpd和Zw计算沉积层Zd的声阻抗,其中Zw为 发射机和墙外表面之间的材料的声阻抗。 该装置的优选实施例包括具有正面和背面的压电或铁电换能器; 声学耦合到所述换能器背面并与所述换能器元件阻抗匹配的背衬构件,所述背衬构件具有近端面和远端面; 以及设置在所述换能器前表面和所述壁外表面之间的延迟材料。
    • 9. 发明授权
    • Guided acoustic wave sensor for pipeline build-up monitoring and characterization
    • 引导声波传感器,用于管道建立监测和表征
    • US06568271B2
    • 2003-05-27
    • US09850962
    • 2001-05-08
    • Vimal V. ShahJames R. BirchakWei HanBruce H. StormRajnikant M. AminBayram KalpakciFouad Fleyfel
    • Vimal V. ShahJames R. BirchakWei HanBruce H. StormRajnikant M. AminBayram KalpakciFouad Fleyfel
    • G01N2920
    • G01N29/11G01N29/4472G01N29/449G01N2291/0258G01N2291/02854G01N2291/0422G01N2291/0427G01N2291/057G01N2291/105G01N2291/2634
    • A system for monitoring the presence of deposits or buildup on the inside wall of a fluid-containing pipe comprises a pair of acoustic transmitters outside of the pipe and spaced apart along the length of the pipe and capable of transmitting an acoustic signal into the pipe wall, a pair of acoustic receivers outside of the pipe and spaced apart along the length of the pipe and capable of receiving an acoustic signal from the pipe wall, and a power source for causing the transmitters to transmit a signal. A method for monitoring the presence of deposits or buildup on the inside wall of a fluid-containing pipe, comprises (a) providing first and second acoustic transmitters outside of the pipe and spaced apart along the length of the pipe and capable of transmitting an acoustic signal into the pipe wall, (b) providing first and second acoustic receivers outside of the pipe and spaced apart along the length of the pipe and capable of receiving an acoustic signal from the pipe wall, (c) transmitting a first signal from the first transmitter, (d) measuring the amplitude of the first signal received at the first and second receivers as A11 and A12, respectively, (e) transmitting a second signal from the second transmitter, (f) measuring the amplitude of the second signal received at the first and second receivers as A21 and A22, respectively, and (g) calculating the attenuation of the signal over the length of pipe using the values of A11, A12, A21 and A22.
    • 用于监测流体容纳管的内壁上的沉积物或积聚物的存在的系统包括在管的外部的一对声发射体,并沿着管的长度间隔开,并且能够将声信号传输到管壁 ,一对声学接收器,位于管道外部并沿着管道的长度间隔开并且能够从管壁接收声学信号,以及用于使发射器发射信号的电源。 一种用于监测在含流体管道的内壁上的沉积物或积聚物的存在的方法包括:(a)在管道外部提供第一和第二声发射器,并沿管道的长度间隔开并且能够传输声学 信号进入管壁,(b)在管道外部提供第一和第二声学接收器并沿着管道的长度间隔开并且能够从管壁接收声学信号,(c)从第一个 (d)分别测量在第一和第二接收机处接收的第一信号的振幅为A11和A12;(e)从第二发射机发送第二信号;(f)测量在第一和第二接收机接收的第二信号的振幅, 分别为A21和A22的第一和第二接收机,(g)使用A11,A12,A21和A22的值计算管道长度上信号的衰减。
    • 10. 发明授权
    • Acoustic sensor for pipeline deposition characterization and monitoring
    • 用于管道沉积表征和监测的声学传感器
    • US06513385B1
    • 2003-02-04
    • US09851511
    • 2001-05-08
    • Wei HanVimal V. ShahJames R. BirchakBruce H. Storm, Jr.Rajnikant M. AminBayram KalpakciFouad Fleyfel
    • Wei HanVimal V. ShahJames R. BirchakBruce H. Storm, Jr.Rajnikant M. AminBayram KalpakciFouad Fleyfel
    • G01N2900
    • G01N29/2437G01B17/02G01N29/041G01N29/2468G01N29/28G01N2291/02854G01N2291/0421G01N2291/0422G01N2291/2634
    • A method and apparatus for analyzing a deposited layer on the inner surface of a fluid container wall having inner and outer surfaces are disclosed. One embodiment of the method comprises (a) transmitting an acoustic signal from a transmitter at a first distance from the outer surface of the wall; (b) receiving a first received signal A, comprising a reflection from the wall outer surface; (c) receiving a second received signal B, comprising a reflection from the wall inner surface; (d) receiving a third received signal C from the wall inner surface; (e) calculating a coefficient Rwp from A, B and C, and (f) calculating a coefficient Rpd from A, B and Rwp, and calculating the acoustic impedance of the deposited layer Zd from Rwp, Rpd, and Zw, where Zw is the acoustic impedance of the material between the transmitter and the wall outer surface. A preferred embodiment of the apparatus comprises a piezoelectric or ferroelectric transducer having front and back faces; a backing member acoustically coupled to said transducer back face and impedance-matched to said transducer element, said backing member having proximal and remote faces; and a delay material disposed between said transducer front face and the wall outer surface.
    • 公开了一种用于分析具有内表面和外表面的流体容器壁的内表面上的沉积层的方法和装置。 该方法的一个实施例包括(a)从距离壁的外表面第一距离的发射器发射声信号; (b)接收第一接收信号A,包括来自所述壁外表面的反射; (c)接收第二接收信号B,其包括来自所述壁内表面的反射; (d)从所述壁内表面接收第三接收信号C; (e)从A,B和C计算系数Rwp,以及(f)从A,B和Rwp计算系数Rpd,并从Rwp,Rpd和Zw计算沉积层Zd的声阻抗,其中Zw为 发射机和墙外表面之间的材料的声阻抗。 该装置的优选实施例包括具有正面和背面的压电或铁电换能器; 声学耦合到所述换能器背面并与所述换能器元件阻抗匹配的背衬构件,所述背衬构件具有近端面和远端面; 以及设置在所述换能器前表面和所述壁外表面之间的延迟材料。