会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Plasmonic and/or microcavity enhanced optical protein sensing
    • 等离子体和/或微腔增强的光学蛋白质感测
    • US07298474B2
    • 2007-11-20
    • US11102346
    • 2005-04-08
    • Vladimir P. DrachevVladimir ShalaevDongmao ZhangDor Ben-Amotz
    • Vladimir P. DrachevVladimir ShalaevDongmao ZhangDor Ben-Amotz
    • G01J3/44
    • G01N21/658G01N15/1434G01N27/44721G01N30/74G01N33/54373G01N2030/027
    • Instruments for molecular detection at the nano-molar to femto-molar concentration level include a longitudinal capillary column (10) of known wall thickness and diameter. The column (10) contains a medium (24) including a target molecule (30) and a plurality of optically interactive dielectric beads (26) on the order of about 10−6 meters up to about 10−3 meters and/or metal nanoparticles (31) on the order of 1-500 nm. A flow inducer (34) causes longitudinal movement of the target molecule within the column (10). A laser (14) introduces energy laterally with respect to the column (10) at a wavelength and in a direction selected to have a resonant mode within the capillary column wall (12) and couple to the medium (24). A detector (40) is positioned to detect Raman scattering occurring along the column (10) due to the presence of the target molecule.
    • 在纳摩尔至毫摩尔浓度水平下用于分子检测的仪器包括具有已知壁厚和直径的纵向毛细管柱(10)。 柱(10)包含包含目标分子(30)和大约10 -6毫米至约10微米的多个光学交互的电介质珠(26)的介质(24) 和/或大约1-500nm的金属纳米粒子(31)。 流动诱导器(34)引起靶分子在柱(10)内的纵向运动。 激光器(14)相对于柱(10)在波长和选择为在毛细管柱壁(12)内具有共振模式并耦合到介质(24)的方向上横向引入能量。 定位探测器(40)以检测由于靶分子的存在而沿塔(10)发生的拉曼散射。
    • 3. 发明授权
    • Near field raman imaging
    • 近场拉曼成像
    • US08599489B2
    • 2013-12-03
    • US12449604
    • 2008-02-26
    • Vladimir M. ShalaevAlexander P. KildishevVladimir P. DrachevWenshan Cai
    • Vladimir M. ShalaevAlexander P. KildishevVladimir P. DrachevWenshan Cai
    • G02B3/12G02B3/00
    • G02B3/02B82Y20/00G02B1/007G02B21/02
    • A tunable super-lens (TSL) for nanoscale optical sensing and imaging of bio-molecules and nano-manufacturing utilizes negative-index materials (NIMs) that operate in the visible or near infrared light. The NIMs can create a lens that will perform sub-wavelength imaging, enhanced resolution imaging, or flat lens imaging. This new TSL covers two different operation scales. For short distances between the object and its image, a near-field super-lens (NFSL) can create or enhance images of objects located at distances much less than the wavelength of light. For the far-zone, negative values are necessary for both the permittivity ∈ a permeability μ. While well-structured periodic meta-materials, which require delicate design and precise fabrication, can be used, metal-dielectric composites are also candidates for NIMs in the optical range. The negative-refraction in the composite films can be made by using frequency-selective photomodification.
    • 用于纳米尺度光学感测和生物分子和纳米制造成像的可调超透镜(TSL)利用在可见光或近红外光下工作的负指数材料(NIM)。 NIM可以创建将执行亚波长成像,增强分辨率成像或平面透镜成像的镜头。 这个新的TSL涵盖两个不同的操作规模。 对于物体与其图像之间的距离较短,近场超透镜(NFSL)可以创建或增强距离远于光波长的距离的物体的图像。 对于远区,对于介电常数E为渗透率μ而言,负值是必需的。 虽然可以使用需要精细设计和精确制造的良好结构的周期性超常材料,但是金属 - 介电复合材料也是光学范围中NIM的候选者。 复合膜中的负折射可以通过使用频率选择性光改性来制造。
    • 4. 发明申请
    • NEAR FIELD SUPER LENS EMPLOYING TUNABLE NEGATIVE INDEX MATERIALS
    • 使用可控负指数材料的近场超镜
    • US20100134898A1
    • 2010-06-03
    • US12449604
    • 2008-02-26
    • Vladimir M. ShalaevAlexander P. KildishevVladimir P. DrachevWenshan Cai
    • Vladimir M. ShalaevAlexander P. KildishevVladimir P. DrachevWenshan Cai
    • G02B3/12G02B3/00
    • G02B3/02B82Y20/00G02B1/007G02B21/02
    • A tunable super-lens (TSL) for nanoscale optical sensing and imaging of bio-molecules and nano-manufacturing utilizes negative-index materials (NIMs) that operate in the visible or near infrared light. The NIMs can create a lens that will perform sub-wavelength imaging, enhanced resolution imaging, or flat lens imaging. This new TSL covers two different operation scales. For short distances between the object and its image, a near-field super-lens (NFSL) can create or enhance images of objects located at distances much less than the wavelength of light. For the far-zone, negative values are necessary for both the permittivity ε a permeability μ. While well-structured periodic meta-materials, which require delicate design and precise fabrication, can be used, metal-dielectric composites are also candidates for NIMs in the optical range. The negative-refraction in the composite films can be made by using frequency-selective photomodification.
    • 用于纳米尺度光学感测和生物分子和纳米制造成像的可调超透镜(TSL)利用在可见光或近红外光下工作的负指数材料(NIM)。 NIM可以创建将执行亚波长成像,增强分辨率成像或平面透镜成像的镜头。 这个新的TSL涵盖两个不同的操作规模。 对于物体与其图像之间的距离较短,近场超透镜(NFSL)可以创建或增强距离远于光波长的距离的物体的图像。 对于远区来说,负值必须用于介电常数和等级 磁导率μ。 虽然可以使用需要精细设计和精确制造的良好结构的周期性超常材料,但是金属 - 介电复合材料也是光学范围中NIM的候选者。 复合膜中的负折射可以通过使用频率选择性光改性来制造。