会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Multidimensional indexing structure for use with linear optimization queries
    • 用于线性优化查询的多维索引结构
    • US06408300B1
    • 2002-06-18
    • US09360366
    • 1999-07-23
    • Lawrence David BergmanVittorio CastelliYuan-Chi ChangChung-Sheng LiJohn Richard Smith
    • Lawrence David BergmanVittorio CastelliYuan-Chi ChangChung-Sheng LiJohn Richard Smith
    • G06F1730
    • G06F17/30333Y10S707/99934Y10S707/99942Y10S707/99945Y10S707/99948
    • Linear optimization queries, which usually arise in various decision support and resource planning applications, are queries that retrieve top N data records (where N is an integer greater than zero) which satisfy a specific optimization criterion. The optimization criterion is to either maximize or minimize a linear equation. The coefficients of the linear equation are given at query time. Methods and apparatus are disclosed for constructing, maintaining and utilizing a multidimensional indexing structure of database records to improve the execution speed of linear optimization queries. Database records with numerical attributes are organized into a number of layers and each layer represents a geometric structure called convex hull. Such linear optimization queries are processed by searching from the outer-most layer of this multi-layer indexing structure inwards. At least one record per layer will satisfy the query criterion and the number of layers needed to be searched depends on the spatial distribution of records, the query-issued linear coefficients, and N, the number of records to be returned. When N is small compared to the total size of the database, answering the query typically requires searching only a small fraction of all relevant records, resulting in a tremendous speedup as compared to linearly scanning the entire dataset.
    • 通常在各种决策支持和资源规划应用中出现的线性优化查询是检索满足特定优化标准的前N个数据记录(其中N是大于零的整数)的查询。 优化标准是最大化或最小化线性方程。 查询时给出线性方程的系数。 公开了用于构建,维护和利用数据库记录的多维索引结构以提高线性优化查询的执行速度的方法和装置。 具有数值属性的数据库记录被分为多个层,每个层表示一个称为凸包的几何结构。 通过从该多层索引结构的最外层向内搜索来处理这样的线性优化查询。 每层至少一个记录将满足查询条件,需要搜索的层数取决于记录的空间分布,查询发出的线性系数,N,要返回的记录数。 当N与数据库的总大小相比较小时,回答查询通常只需要搜索所有相关记录的一小部分,与线性扫描整个数据集相比,导致了巨大的加速。
    • 7. 发明授权
    • Adaptive similarity searching in sequence databases
    • 序列数据库中的自适应相似性搜索
    • US5940825A
    • 1999-08-17
    • US726889
    • 1996-10-04
    • Vittorio CastelliChung-Sheng LiPhilip Shi-lung Yu
    • Vittorio CastelliChung-Sheng LiPhilip Shi-lung Yu
    • G01V1/28G06F17/30
    • G01V1/288Y10S707/99932Y10S707/99933Y10S707/99936Y10S707/99937
    • A computer system and method for performing similarity searches which is phase and scale insensitive and which allows similarity searches to be performed at a semantic level. Each sequence in a database is preferably segmented at multiple projections and/or resolution levels. The sequences may represent object having multi-dimensional features such as temporal and/or spatial-temporal data. Preferably, the segmenting logic starts with the finest resolution, and each sequence is parsed into a number of disjointed segments, wherein each segment has uniform features. The uniform features could be segments having a constant slope, or waveform segments representable by a single function. The segments may then be re-sampled into a fixed length vector with appropriate normalization. A label may also be assigned to each segment via conventional clustering/classification methods. The above steps are iterated at successive projections and/or resolution levels until each sequence in the database has been independently segmented and clustered. Thus, the labels are preferably extracted in a pseudo-hierarchical manner in which the label of the lowest resolution representation of the sequence is extracted first. The representation of each time series at various resolutions and/or projections captures different characteristics of the same time series (or 2D/3D objects). Recall that each segment represents a region having uniform features. The segmentation at each individual resolution and/or projection thus enables recognition or emphasis of different characteristics within segments having uniform features.
    • 一种用于执行相位和尺度不敏感并且允许在语义级别执行相似性搜索的相似性搜索的计算机系统和方法。 数据库中的每个序列优选地以多个投影和/或分辨率级别分段。 序列可以表示具有多维特征的对象,诸如时间和/或空间 - 时间数据。 优选地,分割逻辑以最好的分辨率开始,并且每个序列被解析成多个不相交的段,其中每个段具有均匀的特征。 均匀特征可以是具有恒定斜率的段或由单个函数表示的波形段。 然后可以将段重新采样到具有适当归一化的固定长度向量中。 也可以通过常规聚类/分类方法将标签分配给每个片段。 上述步骤在连续的投影和/或分辨率级别迭代,直到数据库中的每个序列已被独立地分段和聚类。 因此,优选地以伪分级方式提取标签,其中首先提取序列的最低分辨率表示的标签。 每个时间序列在各种分辨率和/或投影下的表示可以捕获相同时间序列(或2D / 3D对象)的不同特征。 回想一下,每个片段表示具有均匀特征的区域。 因此,在每个单独的分辨率和/或投影下的分割使得能够识别或强调具有统一特征的段内的不同特征。