会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Bayesian probability accuracy improvements for web traffic predictions
    • 网络流量预测的贝叶斯概率精度提高
    • US07593906B2
    • 2009-09-22
    • US11461030
    • 2006-07-31
    • David M. ChickeringAshis K. RoyPrasanth Pulavarthi
    • David M. ChickeringAshis K. RoyPrasanth Pulavarthi
    • G06N7/00
    • G06N7/005G06Q30/0246H04L41/08H04L41/147H04L41/16
    • Enhancements to Bayesian prediction models for network location traffic provide increased accuracy in web traffic predictions. The enhancements include implementing user advertising target queries to determine preferred edges of a Bayesian model, employing hierarchical data structures to cleanse training data for a Bayesian model, and/or augmenting existing data with new training data to enhance a previously constructed Bayesian model. Preferred edge enhancements for the Bayesian model utilize target attribute derived preferred edges and/or explicitly specified preferred edges. Training data is cleansed utilizing tag hierarchies that can employ parent-child relationships, ancestor relationships, and/or network location specific parameters. New training data can also be employed to adjust probabilities in a previously constructed Bayesian model. The new training data can be weighted differently than data represented by the previously constructed Bayesian model.
    • 对网络位置流量的贝叶斯预测模型的增强提高了网络流量预测的准确性。 增强包括实现用户广告目标查询以确定贝叶斯模型的优选边缘,采用分层数据结构来清除贝叶斯模型的训练数据,和/或用新的训练数据增强现有数据以增强先前构造的贝叶斯模型。 贝叶斯模型的优选边缘增强使用目标属性导出的优选边缘和/或明确指定的优选边缘。 使用可以使用父子关系,祖先关系和/或网络位置特定参数的标签层次来清理训练数据。 也可以使用新的训练数据来调整先前构造的贝叶斯模型中的概率。 新的训练数据可以与先前构造的贝叶斯模型所代表的数据不同。
    • 4. 发明申请
    • BAYESIAN PROBABILITY ACCURACY IMPROVEMENTS FOR WEB TRAFFIC PREDICTIONS
    • 网络交通预测的贝叶斯可靠性准确性改进
    • US20080027890A1
    • 2008-01-31
    • US11461030
    • 2006-07-31
    • David M. ChickeringAshis K. RoyPrasanth Pulavarthi
    • David M. ChickeringAshis K. RoyPrasanth Pulavarthi
    • G06N7/02
    • G06N7/005G06Q30/0246H04L41/08H04L41/147H04L41/16
    • Enhancements to Bayesian prediction models for network location traffic provide increased accuracy in web traffic predictions. The enhancements include implementing user advertising target queries to determine preferred edges of a Bayesian model, employing hierarchical data structures to cleanse training data for a Bayesian model, and/or augmenting existing data with new training data to enhance a previously constructed Bayesian model. Preferred edge enhancements for the Bayesian model utilize target attribute derived preferred edges and/or explicitly specified preferred edges. Training data is cleansed utilizing tag hierarchies that can employ parent-child relationships, ancestor relationships, and/or network location specific parameters. New training data can also be employed to adjust probabilities in a previously constructed Bayesian model. The new training data can be weighted differently than data represented by the previously constructed Bayesian model.
    • 对网络位置流量的贝叶斯预测模型的增强提高了网络流量预测的准确性。 增强包括实现用户广告目标查询以确定贝叶斯模型的优选边缘,采用分层数据结构来清除贝叶斯模型的训练数据,和/或用新的训练数据增强现有数据以增强先前构造的贝叶斯模型。 贝叶斯模型的优选边缘增强使用目标属性导出的优选边缘和/或明确指定的优选边缘。 使用可以使用父子关系,祖先关系和/或网络位置特定参数的标签层次来清理训练数据。 也可以使用新的训练数据来调整先前构造的贝叶斯模型中的概率。 新的训练数据可以与先前构造的贝叶斯模型所代表的数据不同。