会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • WORM MEMORY USING NANOPARTICLES CONTAINED IN A POLYMER THIN FILM
    • 使用聚合物薄膜中含有纳米粒子的WORM记忆
    • WO2009154386A2
    • 2009-12-23
    • PCT/KR2009003207
    • 2009-06-16
    • UNIV SOGANG IND UNIV COOP FOUNKIM TAE-WHANHAM JUNG-HOONJUNG JAE-HOONKIM SANG-WOOK
    • KIM TAE-WHANHAM JUNG-HOONJUNG JAE-HOONKIM SANG-WOOK
    • H01L21/8246
    • H01L27/10B82Y10/00H01L27/285
    • Disclosed is a WORM memory using nanoparticles contained in a polymer thin film. The WORM memory according to the present invention includes a substrate, and a lower electrode which is formed on the substrate, and consists of conductive materials. The WORM memory further includes a memory layer which is formed on the lower electrode, and has nanoparticles distributed in polymer materials, and an upper electrode which is formed on the memory layer, and consists of conductive materials. The WORM memory according to the present invention employs an insulating polymer and inorganic nanoparticles which are chemically stable, thus significantly improving resistances against an external environmental condition such as heat, light, etc. as compared to a WORM memory which employs organic matter, and maximally suppressing a memory time from being shortened due to the degradation of the characteristics of organic matter.
    • 公开了使用包含在聚合物薄膜中的纳米颗粒的WORM记忆。 根据本发明的WORM存储器包括衬底和形成在衬底上的下电极,并由导电材料组成。 WORM存储器还包括形成在下电极上并具有分散在聚合物材料中的纳米颗粒的存储层,以及形成在存储层上的由导电材料组成的上电极。 根据本发明的WORM存储器采用化学稳定的绝缘聚合物和无机纳米颗粒,因此与使用有机物质的WORM存储器相比,显着提高了耐热,光等外部环境条件的电阻,并且最大程度地 抑制由于有机物的特性的劣化而引起的记忆时间的缩短。
    • 6. 发明申请
    • METHOD FOR FORMING NANOPARTICLES, AND METHOD FOR MANUFACTURING A FLASH MEMORY DEVICE USING SAME
    • 形成纳米颗粒的方法和使用其制造闪速存储器件的方法
    • WO2011105871A3
    • 2012-02-02
    • PCT/KR2011001395
    • 2011-02-28
    • IUCF HYUKIM TAE-WHANJUNG JAE-HOONYUK JONG-MINLEE JEONG-YONG
    • KIM TAE-WHANJUNG JAE-HOONYUK JONG-MINLEE JEONG-YONG
    • B82B3/00
    • B82Y40/00H01L21/28273H01L29/42332H01L29/7881
    • The present invention relates to a method for forming nanoparticles, which uses a sputtering process to easily adjust the density and size of nanoparticles, and to a method for manufacturing a flash memory device using the method. The method for forming nanoparticles according to the present invention comprises: a step of forming a polycrystalline oxide film, which involves forming a polycrystalline oxide film made of an oxide of M1 on a substrate; and a nanoparticle-forming step of providing M2, which is activated by plasma, and/or an oxide of M2 on the polycrystalline oxide film so as to form, on the substrate, an oxide film made of the oxide of M2, wherein the oxide of M2 contains M1 nanoparticles, and wherein M1 and M2 are each one element selected from a group consisting of silicon (Si), germanium (Ge) and a metal, and wherein M1 and M2 are different from each other.
    • 本发明涉及一种用于形成纳米颗粒的方法,其使用溅射方法来容易地调节纳米颗粒的密度和尺寸,以及使用该方法制造闪速存储器件的方法。 根据本发明的形成纳米颗粒的方法包括:形成多晶氧化物膜的步骤,其包括在基板上形成由M1的氧化物制成的多晶氧化物膜; 以及提供由等离子体活化的M2和/或多晶氧化物膜上的M2的氧化物的纳米颗粒形成步骤,以在衬底上形成由氧化物M2制成的氧化膜,其中氧化物 的M2含有M1纳米颗粒,其中M1和M2各自为选自硅(Si),锗(Ge)和金属的一种元素,并且其中M1和M2彼此不同。
    • 7. 发明申请
    • PHOTODETECTOR USING A GRAPHENE THIN FILM AND NANOPARTICLES, AND METHOD FOR PRODUCING SAME
    • 采用石墨薄膜和纳米颗粒的光电探测器及其制造方法
    • WO2011025216A3
    • 2011-07-07
    • PCT/KR2010005631
    • 2010-08-24
    • IUCF HYUKIM TAE-WHANJUNG JAE-HOONSON DONG-ICKLEE JUNG-MINYANG HEE-YEONPARK WON-IL
    • KIM TAE-WHANJUNG JAE-HOONSON DONG-ICKLEE JUNG-MINYANG HEE-YEONPARK WON-IL
    • H01L31/0248B82B1/00
    • H01L31/035209H01L31/112H01L51/428
    • Provided are a photodetector using a graphene thin film and nanoparticles and a method for producing same. The photodetector of the present invention comprises: a sheet-shaped graphene thin film produced by the deposition of graphene using a vapor carbon source; and a nanoparticle layer formed on the graphene thin film and patterned to define an electrode region of the graphene thin film, and consisting of nanoparticles without a matrix material. The above-described photodetector has a planar structure in which the graphene thin film is used as a channel and as an electrode, and nanoparticles are used as a photovoltaic material (which forms an electron-hole pair by the photoelectron-motive force produced by ultraviolet rays). The photodetector of the present invention has a remarkably simple structure and can be produced at a low cost, thus improving productivity. Further, the photodetector of the present invention comprises said graphene thin film, and thus can operate with low power consumption.
    • 提供了使用石墨烯薄膜和纳米颗粒的光电探测器及其制造方法。 本发明的光检测器包括:通过使用蒸汽碳源沉积石墨烯而产生的片状石墨烯薄膜; 以及形成在所述石墨烯薄膜上并且被图案化以限定所述石墨烯薄膜的电极区域并且由不含基质材料的纳米颗粒组成的纳米颗粒层。 上述光检测器具有将石墨烯薄膜用作沟道和电极的平面结构,并且使用纳米颗粒作为光伏材料(其通过由紫外线产生的光电子动力形成电子 - 空穴对 射线)。 本发明的光检测器具有非常简单的结构并且可以以低成本生产,因此提高了生产率。 此外,本发明的光检测器包括所述石墨烯薄膜,因此可以以低功耗工作。
    • 8. 发明申请
    • SOLAR CELL USING P-I-N NANOWIRES
    • 太阳能电池使用P-I-N纳米
    • WO2011005013A3
    • 2011-04-14
    • PCT/KR2010004395
    • 2010-07-06
    • IUCF HYUKIM TAE-WHANYOU JOO-HYUNGJUNG JAE-HUNYI JAE-SEOKPARK WON-IL
    • KIM TAE-WHANYOU JOO-HYUNGJUNG JAE-HUNYI JAE-SEOKPARK WON-IL
    • H01L31/042
    • H01L31/03529H01L31/035281Y02E10/50
    • The present invention relates to a solar cell using p-i-n nanowires, which efficiently absorbs solar light of within a wide range of wavelengths without a loss of light and generates photovoltaic power, and which involves a simple process and has low process costs. The solar cell using p-i-n nanowires according to the present invention comprises a semiconductor layer and a photovoltaic layer. The photovoltaic layer includes a semiconductor structure constituted by a core-nanowire which extends upwardly from the semiconductor layer and which consists of an intrinsic semiconductor material, and a shell-nanowire which covers the outside of the core-nanowire and which consists of a semiconductor material. The semiconductor material which forms the semiconductor layer is an n-type and the semiconductor material which forms the cell-nanowire is a p-type. Alternatively, the semiconductor material which forms the semiconductor layer is a p-type and the semiconductor material which forms the cell-nanowire is an n-type.
    • 本发明涉及一种使用p-i-n纳米线的太阳能电池,其在不损失光线的情况下有效地吸收宽波长范围内的太阳光并且产生光伏电力,并且其涉及简单的工艺并且具有低的工艺成本。 使用根据本发明的p-i-n纳米线的太阳能电池包括半导体层和光伏层。 该光电层包括由从半导体层向上延伸并由本征半导体材料构成的核 - 纳米线和覆盖核 - 纳米线外部并且由半导体材料构成的壳纳米线构成的半导体结构 。 形成半导体层的半导体材料是n型,并且形成单元纳米线的半导体材料是p型。 或者,形成半导体层的半导体材料是p型,并且形成单元纳米线的半导体材料是n型。
    • 9. 发明申请
    • ELECTROPHORETIC DISPLAY WITH INTEGRATED TOUCH SCREEN
    • 具有集成触摸屏的电子显示屏
    • WO2010147398A3
    • 2011-04-21
    • PCT/KR2010003899
    • 2010-06-17
    • IUCF HYUKIM TAE-WHANPARK SU-HYEONGLEE DEA-UK
    • KIM TAE-WHANPARK SU-HYEONGLEE DEA-UK
    • G02F1/167G06F3/041
    • G02F1/167G02F1/13338G02F2001/13312G06F3/0412
    • The present invention relates to an electrophoretic display with an integrated touch screen which uses an infrared optical sensor system. An electrophoretic display, according to one embodiment of the present invention, comprises: a substrate having image gate wires and image signal wires intersecting one another; an image switching TFT electrically connected to the image gate wires and to the image signal wires; a sensing TFT for sensing infrared rays and generating an infrared ray sensing signal; an output switching TFT connected to the sensing TFT, for outputting position information from the infrared ray sensing signal; an infrared filter insulation layer formed on the substrate to cover the sensing TFT, for transmitting only infrared rays; a pixel electrode which is formed on the infrared ray filter insulation layer and which is electrically connected to the image switching TFT; an electrophoretic film which is formed on the pixel electrode, which has a plurality of micro capsules including pigment particles with positive and negative electrical charges; and a common electrode, which is formed on the electrophoretic film.
    • 本发明涉及一种使用红外光学传感器系统的集成触摸屏的电泳显示器。 根据本发明的一个实施例的电泳显示器包括:具有彼此相交的图像栅极线和图像信号线的衬底; 电连接到图像栅极线和图像信号线的图像转换TFT; 用于感测红外线并产生红外线感测信号的感测TFT; 连接到感测TFT的输出开关TFT,用于从红外线感测信号输出位置信息; 形成在基板上以覆盖感测TFT的红外滤光器绝缘层,用于仅传输红外线; 像素电极,其形成在所述红外线滤光器绝缘层上,并且电连接到所述图像转换TFT; 形成在像素电极上的电泳膜,其具有包含具有正和负电荷的颜料颗粒的多个微胶囊; 以及形成在电泳膜上的公共电极。
    • 10. 发明申请
    • TOUCH SCREEN PANEL AND ELECTROPHORETIC DISPLAY DEVICE COMPRISING SAME
    • 触摸屏面板和包含其的电子显示装置
    • WO2011112001A3
    • 2012-01-05
    • PCT/KR2011001629
    • 2011-03-09
    • IUCF HYUKIM TAE-WHANPARK SU-HYEONG
    • KIM TAE-WHANPARK SU-HYEONG
    • G06F3/042
    • G06F3/0386G06F3/0412
    • The present invention relates to a touch screen panel, the location recognition performance of which is not degraded even when the intensity of light inputted from an external source changes, and to an electrophoretic display device using the touch screen panel. The touch screen panel according to the present invention senses the location at which infrared light is inputted from an external source, wherein the touch screen panel is configured such that infrared-light-sensing pixels for sensing infrared light and outputting first location information and external-light-sensing pixels for sensing light inputted from an external source and outputting second location information are arranged alternately with each other.
    • 触摸屏面板技术领域本发明涉及即使当从外部源输入的光的强度变化时,其位置识别性能也不会降低,并且涉及使用触摸屏面板的电泳显示装置。 根据本发明的触摸屏面板感测从外部源输入红外光的位置,其中触摸屏面板被配置为使得用于感测红外光的红外光感测像素并输出第一位置信息和外部 - 用于感测从外部源输入的光并输出第二位置信息的感光像素彼此交替布置。