会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Split-polysilicon CMOS process incorporating self-aligned silicidation
of conductive regions
    • 分离多晶硅CMOS工艺结合导电区域的自对准硅化物
    • US5021353A
    • 1991-06-04
    • US485029
    • 1990-02-26
    • Tyler A. LowreyDermot M. DurcanTrung T. DoanGordon A. HallerMark E. Tuttle
    • Tyler A. LowreyDermot M. DurcanTrung T. DoanGordon A. HallerMark E. Tuttle
    • H01L21/336H01L21/8238
    • H01L29/665H01L21/823835
    • An improved CMOS fabrication process which uses separate masking steps to pattern N-channel and P-channel transistor gates from a single layer of conductively-doped polycrystalline silicon (poly) and incorporates self-aligned salicidation of conductive regions. The object of the improved process is to reduce the cost and improve the reliability, performance and manufacturability of CMOS devices by a process which features a dramatically reduced number of photomasking steps and which further allows self-aligned salicidation of transistor conductive regions. By processing N-channel and P-channel devices separately, the number of photomasking steps required to fabricate complete CMOS circuitry in a single-polysilicon-layer or single-metal layer process can be reduced from eleven to eight. Starting with a substrate of P-type material, N-channel devices are formed first, with unetched poly left in the future P-channel regions until N-channel processing is complete. The improved CMOS process provides the following advantages over conventional process technology: Use of a masked high-energy punch-through implant for N-channel devices is not required; individual optimization of N-channel and P-channel transistors is made possible; a lightly-doped drain (LDD) design for both N-channel and P-channel transistors is readily implemented; source/drain-to-gate offset may be changed independently for N-channel and P-channel devices; and N-channel and P-channel transistors can be independently controlled and optimized for best LDD performance and reliability.
    • 一种改进的CMOS制造工艺,其使用单独的掩模步骤来从单层导电掺杂多晶硅(poly)中的N沟道和P沟道晶体管栅极图案化,并且引入导电区域的自对准的阳离子化。 改进方法的目的是降低成本,并且通过具有显着减少的光掩模步骤数目并进一步允许晶体管导电区域的自对准盐化的方法来降低CMOS器件的可靠性,性能和可制造性。 通过分别处理N沟道和P沟道器件,在单多晶硅层或单金属层工艺中制造完整的CMOS电路所需的光掩模步骤的数量可以从11减少到8个。 从P型材料的衬底开始,首先形成N沟道器件,在未来的P沟道区域中留下未蚀刻的聚合物,直到N沟道处理完成。 与传统工艺技术相比,改进的CMOS工艺提供了以下优点:不需要对N沟道器件使用掩模的高能穿孔注入器; N通道和P沟道晶体管的单独优化成为可能; 容易实现用于N沟道和P沟道晶体管的轻掺杂漏极(LDD)设计; 源/漏 - 门偏移可以针对N沟道和P沟道器件独立地改变; 可以独立控制和优化N沟道和P沟道晶体管,以获得最佳的LDD性能和可靠性。
    • 7. 发明授权
    • Method of making a low-resistance contact to silicon having a titanium
silicide interface, an amorphous titanium nitride barrier layer and a
conductive plug
    • 对具有钛硅化物界面的硅进行低电阻接触的方法,非晶氮化钛阻挡层和导电插塞
    • US5723382A
    • 1998-03-03
    • US509708
    • 1995-07-31
    • Gurtej S. SandhuTrung T. DoanTyler A. Lowrey
    • Gurtej S. SandhuTrung T. DoanTyler A. Lowrey
    • C23C16/34H01L21/285H01L21/768H01L21/44
    • H01L21/76855C23C16/34H01L21/28568H01L21/76843
    • This invention constitutes a contact structure incorporating an amorphous titanium nitride barrier layer formed via low-pressure chemical vapor deposition (LPCVD) utilizing tetrakis-dialkylamido-titanium, Ti(NMe.sub.2).sub.4, as the precursor. The contact structure is fabricated by etching a contact opening through an dielectric layer down to a diffusion region to which electrical contact is to be made. Titanium metal is deposited over the surface of the wafer so that the exposed surface of the diffusion region is completely covered by a layer of the metal. At least a portion of the titanium metal layer is eventually converted to titanium silicide, thus providing an excellent conductive interface at the surface of the diffusion region. A titanium nitride barrier layer is then deposited using the LPCVD process, coating the walls and floor of the contact opening. Chemical vapor deposition of polycrystalline silicon, or of metal, such as tungsten, follows, and proceeds until the contact opening is completely filled with either polycrystalline silicon or metal.
    • 本发明构成了采用利用四 - 二烷基酰胺基钛,Ti(NMe 2)4作为前体的低压化学气相沉积(LPCVD)形成的无定形氮化钛阻挡层的接触结构。 通过将通过电介质层的接触开口蚀刻到要进行电接触的扩散区域来制造接触结构。 钛金属沉积在晶片的表面上,使得扩散区域的暴露表面完全被金属层覆盖。 钛金属层的至少一部分最终被转化为硅化钛,从而在扩散区的表面提供优异的导电界面。 然后使用LPCVD工艺沉积氮化钛阻挡层,涂覆接触开口的壁和底板。 多晶硅或金属如钨的化学气相沉积随后进行,直到接触开口完全充满多晶硅或金属。
    • 8. 发明授权
    • Low-resistance contact to silicon having a titanium silicide interface and an amorphous titanium carbonitride barrier layer
    • 具有硅化钛界面的硅的低电阻接触和无定形氮化钛氮化硼阻挡层
    • US06624517B1
    • 2003-09-23
    • US09505213
    • 2000-02-16
    • Gurtej S. SandhuTrung T. DoanTyler A. Lowrey
    • Gurtej S. SandhuTrung T. DoanTyler A. Lowrey
    • H01L2348
    • H01L21/76855C23C16/34H01L21/28518H01L21/28556H01L21/28568H01L21/76843H01L21/76846H01L21/76856H01L21/76862
    • This invention constitutes a contact structure incorporating an amorphous titanium nitride barrier layer formed via low-pressure chemical vapor deposition (LPCVD) utilizing tetrakis-dialkylamido-titanium, Ti(NMe2)4, as the precursor. The contact structure is fabricated by etching a contact opening through an dielectric layer down to a diffusion region to which electrical contact is to be made. Titanium metal is deposited over the surface of the wafer so that the exposed surface of the diffusion region is completely covered by a layer of the metal. At least a portion of the titanium metal layer is eventually converted to titanium silicide, thus providing an excellent conductive interface at the surface of the diffusion region. A titanium nitride barrier layer is then deposited using the LPCVD process, coating the walls and floor of the contact opening. Chemical vapor deposition of polycrystalline silicon, or of metal, such as tungsten, follows, and proceeds until the contact opening is completely filled with either polycrystalline silicon or metal.
    • 本发明构成了采用利用四 - 二烷基酰胺基钛,Ti(NMe 2)4作为前体的低压化学气相沉积(LPCVD)形成的非晶氮化钛阻挡层的接触结构。 通过将通过电介质层的接触开口蚀刻到要进行电接触的扩散区域来制造接触结构。 钛金属沉积在晶片的表面上,使得扩散区域的暴露表面完全被金属层覆盖。 钛金属层的至少一部分最终被转化为硅化钛,从而在扩散区的表面提供优异的导电界面。 然后使用LPCVD工艺沉积氮化钛阻挡层,涂覆接触开口的壁和底板。 多晶硅或金属如钨的化学气相沉积随后进行,直到接触开口完全充满多晶硅或金属。