会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Solid polymer fuel cell
    • 固体聚合物燃料电池
    • US07541108B2
    • 2009-06-02
    • US11914809
    • 2007-04-20
    • Norihiko KawabataTakashi MorimotoHiroki KusakabeToshihiro MatsumotoYoshiki Nagao
    • Norihiko KawabataTakashi MorimotoHiroki KusakabeToshihiro MatsumotoYoshiki Nagao
    • H01M8/02H01M8/10
    • H01M8/1004H01M8/0247H01M8/0273
    • It is an object of the present invention to provide a means for integrating an MEA and a pair of separators and regulate their positions without using parts that are specifically dedicated for position regulation use. More specifically, the present invention provides a polymer electrolyte fuel cell including a frame-integrated MEA, a separator having a channel for supplying and releasing a fuel gas, and a separator having a channel for supplying and releasing an oxidizer gas, and, in this fuel cell, the frame body of the frame-integrated MEA has a plurality of projections having a hook-shaped tip on both planes of the frame body and each separators has a plurality of stepped parts, and the projections on the frame body and the stepped parts on the pair of separators are integrated by fitting together with each other.
    • 本发明的目的是提供一种用于集成MEA和一对分离器并且调节其位置的装置,而不使用专门用于位置调节使用的部件。 更具体地说,本发明提供了一种固体高分子型燃料电池,其包括框架一体化MEA,具有用于供给和释放燃料气体的通道的隔板,以及具有用于供给和释放氧化剂气体的通道的隔板,在该 燃料电池,框架集成的MEA的框体具有多个突起,在框架体的两个平面上具有钩形尖端,并且每个隔板具有多个阶梯部分,并且框体和台阶上的突起 一对分离器上的部件通过彼此配合而集成。
    • 6. 发明申请
    • FUEL CELL
    • 燃料电池
    • US20090023034A1
    • 2009-01-22
    • US12278076
    • 2008-01-09
    • Hiroki KusakabeToshihiro MatsumotoNorihiko KawabataYoshiki Nagao
    • Hiroki KusakabeToshihiro MatsumotoNorihiko KawabataYoshiki Nagao
    • H01M8/10
    • H01M8/248H01M2008/1095
    • A fuel cell (FC) of the present invention includes: four fastening rods (35) which extend in a stack direction of a stack structure (ST) so as to penetrate through openings of end plates (30L, 30R); and fastening portions (36) which are disposed at both ends of the fastening rods (35) and can adjust fastening forces applied by the fastening rods to the stack structure sandwiched between the end plates. Each fastening rod (35) is disposed in the vicinity of an intermediate point of each side (L1, L2, L3, L4) of the end plate (30L, 30R). In an electrode facing region of the end plate, one or more elastic members (37) are disposed on a first straight line (H1) passing through two fastening rods (35), one or more elastic members (37) are disposed on a second straight line (H2) passing through two fastening rods (35), one or more elastic members (37) are disposed on a third straight line (H3) passing through two fastening rods (35), and one or more elastic members (37) are disposed on a fourth straight line (H4) passing through two fastening rods (35).
    • 本发明的燃料电池(FC)包括:沿堆叠结构(ST)的堆叠方向延伸以穿过端板(30L,30R)的开口的四个紧固杆(35); 以及设置在紧固杆(35)的两端的紧固部(36),并且可以将由紧固杆施加的紧固力调节到夹在端板之间的堆叠结构。 每个紧固杆(35)设置在端板(30L,30R)的每一侧(L1,L2,L3,L4)的中间点附近。 在端板的面向电极的区域中,一个或多个弹性构件(37)设置在穿过两个紧固杆(35)的第一直线(H1)上,一个或多个弹性构件(37)设置在第二直线 通过两个紧固杆(35)的直线(H2),一个或多个弹性构件(37)设置在穿过两个紧固杆(35)的第三直线(H3)上,以及一个或多个弹性构件(37) 设置在通过两个紧固杆(35)的第四直线(H4)上。
    • 9. 发明授权
    • Fuel cell having a fastening structure including a specified configuration of elastic members
    • 具有包括弹性构件的特定构造的紧固结构的燃料电池
    • US08728682B2
    • 2014-05-20
    • US12278076
    • 2008-01-09
    • Hiroki KusakabeToshihiro MatsumotoNorihiko KawabataYoshiki Nagao
    • Hiroki KusakabeToshihiro MatsumotoNorihiko KawabataYoshiki Nagao
    • H01M8/02H01M8/10H01M8/24
    • H01M8/248H01M2008/1095
    • A fuel cell of the present invention includes: four fastening bolts which extend in a stack direction of a stack structure so as to penetrate through openings of end plates and nuts which are disposed at both ends of the fastening bolts and can adjust fastening forces applied by the fastening bolts to the stack structure sandwiched between the end plates. Each fastening bolt is disposed in the vicinity of an intermediate point of each side of the end plate. In an electrode facing region of the end plate, one or more springs are disposed on a first straight line passing through two fastening bolts one or more springs are disposed on a second straight line passing through two fastening bolts one or more springs are disposed on a third straight line passing through two fastening bolts and one or more springs are disposed on a fourth straight line passing through two fastening bolts.
    • 本发明的燃料电池包括:四个紧固螺栓,其沿堆叠结构的堆叠方向延伸以穿过设置在紧固螺栓的两端的端板和螺母的开口,并且可以调节由紧固螺栓施加的紧固力 夹紧在端板之间的堆叠结构的紧固螺栓。 每个紧固螺栓设置在端板每侧的中间点附近。 在端板的面向电极的区域中,一个或多个弹簧设置在穿过两个紧固螺栓的第一直线上,一个或多个弹簧设置在穿过两个紧固螺栓的第二直线上,一个或多个弹簧设置在 通过两个紧固螺栓和一个或多个弹簧的第三条直线设置在穿过两个紧固螺栓的第四条直线上。
    • 10. 发明授权
    • Serpentine fuel cell separator with protrusions and fuel cell including the same
    • 具有突起的蛇形燃料电池分离器和包括其的燃料电池
    • US08278008B2
    • 2012-10-02
    • US11997950
    • 2006-08-04
    • Hiroki KusakabeToshihiro MatsumotoNorihiko KawabataYoshiki NagaoShinsuke TakeguchiYasuo TakebeMasaki Nobuoka
    • Hiroki KusakabeToshihiro MatsumotoNorihiko KawabataYoshiki NagaoShinsuke TakeguchiYasuo TakebeMasaki Nobuoka
    • H01M8/04
    • H01M8/026H01M8/0263H01M8/0265H01M2008/1095
    • A fuel cell separator and a fuel cell are provided that can improve uniformity in reaction gas flow rate and can prevent flooding due to excessive condensed water in passage grooves appropriately. A reaction gas passage region (101) of a separator (2) has a flow splitting region (21) having a passage groove group where the reaction gas is split, and one or more flow merge regions (22) having a recessed portion in which the reaction gas is mixed and connecting a plurality of flow splitting regions so that the passage groove group of the adjacent flow splitting regions (21) are connected to the recessed portion, and protrusions (27) vertically extend from a bottom face of the recessed portion and arranged in an island form. A pair of passage groove groups connected to the recessed portion of the flow merge region (22) is formed so as to have a greater number of grooves in the upstream passage groove group than the number of grooves of grooves in the downstream passage groove group. The recessed portion of the flow merge region (22) is defined, in a turn portion of a serpentine shaped reaction gas passage region (101), by oblique boundaries between the recessed portion and a pair of passage groove groups which are connected to the recessed portion and by the outer end of the turn portion.
    • 提供了能够提高反应气体流量的均匀性的燃料电池用隔板和燃料电池,能够适当地防止通道槽内的过度的冷凝水引起的淹水。 分离器(2)的反应气体通道区域(101)具有分流区域(21),其具有分离反应气体的通道槽组,以及一个或多个具有凹部的流动合流区域(22),其中 反应气体混合并连接多个分流区域,使得相邻分流区域(21)的通道槽组连接到凹部,并且突起(27)从凹部的底面垂直延伸 并以岛屿形式安排。 与流动合流区域(22)的凹部连接的一对通道槽组形成为在上游通道槽组中具有比下游通道槽组中的槽的槽数更多的槽。 流动合流区域(22)的凹部在蛇形反应气体通路区域(101)的转弯部分中被限定在凹部与一对通道槽组之间的斜边界, 部分和转弯部分的外端。