会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Gas sensor
    • 气体传感器
    • US20060049048A1
    • 2006-03-09
    • US10540561
    • 2003-12-25
    • Tomonori KondoShoji KitanoyaNorihiko NadanamiNoboru IshidaTakafumi Oshima
    • Tomonori KondoShoji KitanoyaNorihiko NadanamiNoboru IshidaTakafumi Oshima
    • G01N27/26
    • G01N27/4074H01M8/04089H01M2008/1095
    • A gas sensor capable of reversibly and continuously measuring the concentration of a catalyst poison gas such as CO without specially needing recovering means such as a heater, and measuring the catalyst poison gas concentration without being affected by H2O concentration. The electrical circuit (15) of the gas sensor has an AC power supply (19) for applying an AC voltage between both electrodes (3), (5), an AC voltmeter (21) for measuring an AC voltage (AC effective voltage V) between the both electrodes (3), (5), and an AC ammeter (23) for measuring a current (AC effective current I) running between the both electrodes (3), (5). An impedance is determined from the AC effective voltage V and the AC effective current I generated when the AC voltage is applied to the both electrodes (3), (5). Since this impedance corresponds to the catalyst poison gas concentration, the catalyst poison gas concentration can be determined from the impedance by using a map showing the relation between the impedance and the catalyst poison gas concentration.
    • 一种气体传感器,其能够可靠地连续地测量催化剂毒气如CO的浓度,而不需要诸如加热器的回收装置,并且不受H 2 O 2的影响来测量催化剂毒气浓度 浓度。 气体传感器的电路(15)具有用于在两个电极(3),(5)之间施加交流电压的交流电源(19),用于测量交流电压的交流电压表(AC)(AC有效电压V (3),(5)和用于测量在两个电极(3),(5)之间运行的电流(AC有效电流I)的AC电流表(23)。 根据AC有效电压V和当向两个电极(3),(5)施加AC电压时产生的AC有效电流I)确定阻抗。 由于该阻抗对应于催化剂毒气浓度,所以可以通过使用示出阻抗与催化剂毒气浓度之间的关系的图来从阻抗确定催化剂毒气浓度。
    • 2. 发明授权
    • Hydrogen sensor
    • 氢传感器
    • US06913677B2
    • 2005-07-05
    • US10242403
    • 2002-09-13
    • Shoji KitanoyaNorihiko NadanamiTomonori KondoMasaya WatanabeNoboru Ishida
    • Shoji KitanoyaNorihiko NadanamiTomonori KondoMasaya WatanabeNoboru Ishida
    • G01N27/416G01N27/407G01N33/00H01M8/04H01M8/10
    • G01N27/4074G01N33/005
    • A hydrogen gas sensor is configured such that an O-ring 21 is disposed within a measurement chamber 11a in order to seal against a first support element 9a and against a proton conduction layer 1. This O-ring 21 assumes the form of a rectangular frame that surrounds a first electrode 3, and a substantially circular cross section, and is elastic, heat resistant, and durable. A first metal plate 23a and a second metal plate 23b are disposed from the outside on opposite support elements 9a and 9b, respectively. The hydrogen gas sensor of the present embodiment has a pair of right-hand and left-hand through-holes 29 formed therein so as to extend along the thickness direction thereof. Bolts 31 are inserted into the corresponding through-holes 29. By fastening the metal plates 23a and 23b from the outside by means of the bolts 31 and nuts 33, the opposite support elements 9a and 9b are fastened, thereby clamping the entire hydrogen sensor in a unitary condition.
    • 氢气传感器被配置为使得O形环21设置在测量室11a内以便密封第一支撑元件9a并抵靠质子传导层1.该O形环21呈现为 围绕第一电极3的矩形框架和基本圆形的横截面,并且是弹性的,耐热的和耐用的。 第一金属板23a和第二金属板23b分别从外部设置在相对的支撑元件9a和9b上。 本实施方式的氢气传感器具有沿其厚度方向延伸的一对形成在其中的右侧和左侧通孔29。 螺栓31插入对应的通孔29.通过螺栓31和螺母33从外部紧固金属板23a和23b,将相对的支撑元件9a和9b紧固,从而将 整个氢传感器处于一体状态。
    • 5. 发明授权
    • CO sensor and method of measuring CO concentration
    • CO传感器和测量CO浓度的方法
    • US06797151B2
    • 2004-09-28
    • US10035248
    • 2002-01-04
    • Norihiko NadanamiTomonori KondoRyuji InoueNoboru IshidaTakafumi Oshima
    • Norihiko NadanamiTomonori KondoRyuji InoueNoboru IshidaTakafumi Oshima
    • G01N27407
    • G01N27/4074G01N33/004
    • A CO sensor and a CO-concentration measurement method which enables accurate measurement of CO concentration irrespective of the hydrogen concentration of a gas under measurement. By applying a first predetermined voltage between first and second electrodes 7 and 8, hydrogen contained in a gas under measurement which has been introduced into a first measurement space 2 via a first diffusion-controlling section 1 dissociates, decomposes, or reacts with another element to generate protons. The thus-generated protons are transported from the first electrode 7 to the second electrode 8 via a first proton-conductive layer 5 or protons are transported from the second electrode 8 to the first electrode 7 via the first proton-conductive layer 5 (when the hydrogen concentration of the measurement gas is extremely low), so that the hydrogen concentration within the first measurement space 2 is controlled to a constant level. The gas under measurement having a controlled hydrogen concentration is introduced into a second measurement space 4 via a second diffusion-controlling section 3, and a second predetermined voltage is applied between third and fourth electrodes 9 and 10. The CO concentration of the gas under measurement is obtained based on current (a limiting proton current) which flows between the third and fourth electrodes 9 and 10. Alternatively, the CO concentration of the gas under measurement is obtained from electromotive force generated between the third and fourth electrodes 9 and 10.
    • 一种CO传感器和CO浓度测量方法,其能够精确测量CO浓度,而与测量的气体的氢浓度无关。 通过在第一和第二电极7和8之间施加第一预定电压,通过第一扩散控制部分1被引入到第一测量空间2中的测量气体中所含的氢离子,分解或与其它元件反应 产生质子。 由此产生的质子经由第一质子传导层5从第一电极7传送到第二电极8,或者质子经由第一质子传导层5从第二电极8输送到第一电极7(当 测量气体的氢浓度极低),使得第一测量空间2内的氢浓度被控制在一定水平。 具有受控氢浓度的测量气体经由第二扩散控制部分3引入第二测量空间4,并且在第三和第四电极9和10之间施加第二预定电压。测量气体的CO浓度 基于在第三和第四电极9和10之间流动的电流(限制质子电流)获得。或者,测量气体的CO浓度是从第三和第四电极9和10之间产生的电动势获得的。
    • 6. 发明授权
    • Hydrogen sensor
    • 氢传感器
    • US07189364B2
    • 2007-03-13
    • US10119901
    • 2002-04-11
    • Norihiko NadanamiTomonori KondoMasaya WatanabeRyuji InoueNoboru IshidaTakafumi Oshima
    • Norihiko NadanamiTomonori KondoMasaya WatanabeRyuji InoueNoboru IshidaTakafumi Oshima
    • B32B5/02B32B27/04B32B27/12G01N27/00G01N7/00
    • G01N33/005G01N27/4074Y10T436/11Y10T436/203332Y10T436/22Y10T436/25875
    • A hydrogen sensor includes a first electrode 3 and a second electrode 4 provided in contact with a proton conduction layer 2; a gas diffusion controlling portion 6 provided between a measurement gas atmosphere and the first electrode 3; and a support element (1a, 1b) for supporting the proton conduction layer 6, the first electrode 3, the second electrode 4, and the gas diffusion controlling portion 6. Hydrogen contained in a measurement gas introduced via the gas diffusion controlling portion 6 is dissociated, decomposed, or reacted by applying a voltage between the first electrode 3 and the second electrode 4 to thereby generate protons. Hydrogen concentration is obtained on the basis of a limiting current generated as a result of the generated protons being pumped out via the proton conduction layer 2 from the first electrode 3 side of the proton conduction layer to the second electrode 4 side of the proton conduction layer. Hydrogen concentration on the first electrode 2 is controlled to a partial pressure of not less than 10−12 atm, or more preferably, of not less than 3×10−12 atm and of less than 10−2 atm.
    • 氢传感器包括与质子传导层2接触而设置的第一电极3和第二电极4; 设置在测量气体气氛和第一电极3之间的气体扩散控制部分6; 以及用于支撑质子传导层6,第一电极3,第二电极4和气体扩散控制部分6的支撑元件(1a,1b)。 通过气体扩散控制部分6导入的测量气体中所含的氢离子,分解或反应,通过在第一电极3和第二电极4之间施加电压从而产生质子。 基于由生成的质子经由质子传导层2从质子传导层的第一电极3侧向质子传导层的第二电极4侧泵出的限制电流获得氢浓度 。 将第一电极2上的氢浓度控制在不低于大气压的分压,或者更优选不低于3×10 12大气压,以及 小于10-2大气压。