会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Event prediction in dynamic environments
    • 动态环境中的事件预测
    • US08417650B2
    • 2013-04-09
    • US12694485
    • 2010-01-27
    • Thore GraepelJoaquin Quinonero CandelaThomas Ivan BorchertRalf Herbrich
    • Thore GraepelJoaquin Quinonero CandelaThomas Ivan BorchertRalf Herbrich
    • G06F15/18
    • G06Q30/02G06N7/005G06Q10/00G06Q30/0202
    • Event prediction in dynamic environments is described. In an embodiment a prediction engine may use the learnt information to predict events in order to control a system such as for internet advertising, email filtering, fraud detection or other applications. In an example one or more variables exists for pre-specified features describing or associated with events and each variable is considered to have an associated weight and time stamp. For example, belief about each weight is represented using a probability distribution and a dynamics process is used to modify the probability distribution in a manner dependent on the time stamp for that weight. For example, the uncertainty about the associated variable's influence on prediction of future events is increased. Examples of different schedules for applying the dynamics process are given.
    • 描述动态环境中的事件预测。 在一个实施例中,预测引擎可以使用所学习的信息来预测事件,以便控制诸如互联网广告,电子邮件过滤,欺诈检测或其他应用的系统。 在一个示例中,存在用于描述或与事件相关联的预先指定的特征的一个或多个变量,并且每个变量被认为具有相关联的权重和时间戳。 例如,使用概率分布来表示关于每个权重的信念,并且使用动态过程以取决于该权重的时间戳的方式来修改概率分布。 例如,相关变量对未来事件预测的影响的不确定性增加。 给出了应用动态过程的不同时间表的示例。
    • 3. 发明申请
    • Scalable Clustering
    • 可扩展聚类
    • US20100262568A1
    • 2010-10-14
    • US12421853
    • 2009-04-10
    • Anton SchwaighoferJoaquin Quinonero CandelaThomas BorchertThore GraepelRalf Herbrich
    • Anton SchwaighoferJoaquin Quinonero CandelaThomas BorchertThore GraepelRalf Herbrich
    • G06N5/02G06F15/18
    • G06N99/005G06K9/6226
    • A scalable clustering system is described. In an embodiment the clustering system is operable for extremely large scale applications where millions of items having tens of millions of features are clustered. In an embodiment the clustering system uses a probabilistic cluster model which models uncertainty in the data set where the data set may be for example, advertisements which are subscribed to keywords, text documents containing text keywords, images having associated features or other items. In an embodiment the clustering system is used to generate additional features for associating with a given item. For example, additional keywords are suggested which an advertiser may like to subscribe to. The additional features that are generated have associated probability values which may be used to rank those features in some embodiments. User feedback about the generated features is received and used to revise the feature generation process in some examples.
    • 描述了可扩展的集群系统。 在一个实施例中,聚类系统可操作用于具有数千万个特征的数百万个项目被聚集的极大规模应用。 在一个实施例中,聚类系统使用概率聚类模型,其对数据集中的不确定性进行建模,其中数据集可以是例如订阅关键字的广告,包含文本关键字的文本文档,具有相关联特征或其他项目的图像。 在一个实施例中,聚类系统用于产生用于与给定项目相关联的附加特征。 例如,建议广告客户可能希望订阅的其他关键字。 生成的附加特征具有相关联的概率值,其可用于在某些实施例中对这些特征进行排名。 在一些示例中,接收并用于用户对生成的特征的反馈以修改特征生成过程。
    • 4. 发明申请
    • Event Prediction
    • 事件预测
    • US20090043593A1
    • 2009-02-12
    • US11835985
    • 2007-08-08
    • Ralf HerbrichThore GraepelOnno ZoeterJoaquin Quinonero CandelaPhillip Trelford
    • Ralf HerbrichThore GraepelOnno ZoeterJoaquin Quinonero CandelaPhillip Trelford
    • G06F17/18G06Q99/00
    • G06Q10/04G06Q30/0185
    • There are many situations in which it is desired to predict outcomes of events. In an example, an event prediction system is described which receives variables for a proposed event. The system accesses learnt statistics describing belief about weights associated with the variables and uses the weights to determine probability information that the proposed event will have a specified outcome. The process involves combining the accessed statistics and mapping them into a number representing the probability. In another example, a machine learning process using assumed density filtering is used to learn the statistics from data about observed events. The event prediction system may be used as part of any suitable type of system such as an internet advertising system, an email filtering system, or a fraud detection system.
    • 有很多情况需要预测事件的结果。 在一个示例中,描述了接收所提出事件的变量的事件预测系统。 系统访问学习的统计数据,描述与变量相关联的权重的信念,并使用权重来确定拟议事件将具有指定结果的概率信息。 该过程涉及组合所访问的统计数据并将其映射成表示概率的数字。 在另一个例子中,使用假设浓度滤波的机器学习过程来从关于观测事件的数据中学习统计数据。 事件预测系统可以用作任何合适类型的系统的一部分,例如互联网广告系统,电子邮件过滤系统或欺诈检测系统。