会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明专利
    • Method for calculating uep around hull
    • 用于计算海鸥UEP的方法
    • JP2012018038A
    • 2012-01-26
    • JP2010154647
    • 2010-07-07
    • Technical Research & Development Institute Ministry Of Defence防衛省技術研究本部長
    • NAKAMURA HISASHIKIMURA TOSHIJIAKAGI NAOFUMI
    • G01N27/00B63B59/00B63G9/06
    • PROBLEM TO BE SOLVED: To provide a method for calculating a UEP around a hull in which the UEP at an arbitrary position can be estimated and calculated simply in a short time without determining an electrode arrangement and a current value of the hull, and regardless of skill and experience of an engineer.SOLUTION: The UEP around the hull is measured by a UEP sensor and a relative position between the hull center and the UEP sensor is measured (ST 1) to input measurement data (ST 2). A degree nn and order mm in an expansion method for various kinds of harmonic functions are set (ST 3), and a position function in a calculation expression is calculated based on measurement data on the relative position between the hull center and the UEP sensor (ST 4). A determinant of a least-square method is prepared (ST 5), and an expansion coefficient Dis calculated by solving this determinant (ST 6). An estimation surface or an estimation line is set (ST 7), the position function in a set point j is calculated (ST 8), and the UEP in the set point j is calculated (ST 9).
    • 要解决的问题:提供一种用于计算围绕船体的UEP的方法,其中可以在短时间内简单地估计和计算任意位置的UEP,而不确定电极布置和船体的当前值, 并且不管工程师的技能和经验。 解决方案:船体周围的UEP由UEP传感器测量,并测量船体中心和UEP传感器之间的相对位置(ST 1)以输入测量数据(ST 2)。 设定用于各种谐波函数的扩展方法中的程度nn和阶数mm(ST3),并且基于船体中心和UEP传感器之间的相对位置的测量数据计算计算表达式中的位置函数( ST 4)。 制备最小二乘法的决定因素(ST 5),通过求解这个行列式(ST6)来计算膨胀系数D t 。 设置估计表面或估计线(ST7),计算设定点j中的位置函数(ST8),并计算设定点j中的UEP(ST9)。 版权所有(C)2012,JPO&INPIT
    • 2. 发明专利
    • Method for calculating hull periphery uep
    • 计算外科手术UEP的方法
    • JP2012040958A
    • 2012-03-01
    • JP2010184214
    • 2010-08-19
    • Technical Research & Development Institute Ministry Of Defence防衛省技術研究本部長
    • NAKAMURA TAKASHIKIMURA TOSHIJIAKAGI NAOFUMI
    • B63B59/04G01N27/06
    • PROBLEM TO BE SOLVED: To provide a method for calculating hull periphery UEP which can accurately estimate and calculate UEP at an optional position simply and in a short time regardless of skill or experience of an engineer.SOLUTION: This method includes: ST3 for setting positions of a plurality of electrodes in a hull; ST4 for setting electrode combination for selecting optional two out of a plurality of set electrodes by tt pieces alone; ST5 for setting a degree of order nn of a virtual electrode in an electric image method; ST6 for creating the virtual electrode for all the electrode combinations; ST8 for calculating a position function in an UEP calculation equation due to the electric image method; ST9 for creating a determinant of a least square method; ST10 for calculating a current value Ibetween the electrodes by solving it; ST11 for setting an estimation face or an estimation line; ST12 for calculating a position function in the UEP calculation equation of a set point j by the electric image method; and ST13 for calculating UEP at the set point j.
    • 要解决的问题:提供一种用于计算船体周边UEP的方法,其可以简单且在短时间内精确地估计和计算UEP,无论工程师的技能或经验如何。 解决方案:该方法包括:用于设置船体中多个电极的位置的ST3; ST4,用于设置电极组合,用于仅通过tt片选择多个设置电极中的可选的两个; ST5,用于在电图像方法中设置虚拟电极的阶数nn; ST6,用于创建所有电极组合的虚拟电极; ST8,用于通过电图像法计算UEP计算方程中的位置函数; ST9用于创建最小二乘法的行列式; ST10,用于计算电极之间的电流值I t ; ST11,用于设置估计面或估计线; ST12,用于通过电图像法计算设定点j的UEP计算方程中的位置函数; 和用于在设定点j计算UEP的ST13。 版权所有(C)2012,JPO&INPIT
    • 3. 发明专利
    • Method for deriving demagnetization coil combination of hull
    • 用于衍生螺旋线圈组合的方法
    • JP2011111085A
    • 2011-06-09
    • JP2009270874
    • 2009-11-28
    • Technical Research & Development Institute Ministry Of Defence防衛省技術研究本部長
    • NAKAMURA TAKASHIKIMURA TOSHIJIAKAGI NAOFUMI
    • B63G9/06
    • PROBLEM TO BE SOLVED: To provide a method for deriving the demagnetization coil combination of a hull simulating the demagnetized state at an arbitrary adjusting surface or line when conducting each demagnetization coil to be selected among the demagnetization coils as candidates provided in the hull from the ship design stage without manufacturing any hull magnetic model, and deriving the combination of the demagnetization coils in which the hull external magnetic field at the adjusting surface or line is minimized. SOLUTION: A numerical calculation model of a hull is prepared (ST1). A numerical calculation model of n-sets of candidate demagnetization coils C 1 -C n is prepared (ST2). An adjusting surface or line forming an object for demagnetization is set (ST3). The optimum demagnetization current in which the hull external magnetic field vector H F/D in a demagnetized state is minimized is identified by the optimum parameter search method for each of the combination (ST8) of m-sets of demagnetization coils among the n-sets of candidate demagnetization coils C 1 -C n (ST11). COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:提供一种用于当将在退磁线圈中选择的每个去磁线圈当作设置在船体中的候选物时,提供模拟在任意调节表面或线路处的退磁状态的船体的退磁线圈组合的方法 从船舶设计阶段,不制造任何船体磁性模型,并导出其中调整表面或线路上的船体外部磁场最小化的去磁线圈的组合。 解决方案:准备船体的数值计算模型(ST1)。 准备n组候选去磁线圈C -C n 的数值计算模型(ST2)。 设置形成去磁对象的调整面或线(ST3)。 在去磁状态下的船体外部磁场矢量H F / D 最小化的最佳消磁电流通过用于m组的组合(ST8)中的每一个的最佳参数搜索方法来识别 n组候选去磁线圈C -C n 中的去磁线圈(ST11)。 版权所有(C)2011,JPO&INPIT
    • 4. 发明专利
    • Method and device for reducing magnetism on hull
    • 用于减少船体上的磁铁的方法和装置
    • JP2011093383A
    • 2011-05-12
    • JP2009247884
    • 2009-10-28
    • Technical Research & Development Institute Ministry Of Defence防衛省技術研究本部長
    • NAKAMURA TAKASHIKIMURA TOSHIJIAKAGI NAOFUMI
    • B63G9/06H01F13/00
    • PROBLEM TO BE SOLVED: To provide a method and device for reducing magnetism on a hull capable of estimating a magnetic field outside the hull even when magnetism on the hull is changed while a ship is on a voyage, and capable of reducing the magnetic field outside the hull at an arbitrary depth by controlling a degaussing current value of all degaussing coils provided in the hull. SOLUTION: The magnetic field outside the hull at the arbitrary depth is estimated based on an expansion coefficient of the magnetic field outside the hull. Meanwhile, the magnetic field outside the hull of each of degaussing coil effects at the arbitrary depth is estimated based on the expansion coefficient of the magnetic field outside the hull of each of the degaussing coil effects previously calculated. The degaussing current value for minimizing the magnetic field outside the hull at the arbitrary depth is specified using an optimal parameter searching method. Electricity is carried to each of the degaussing coils based on the specified degaussing current value. COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:提供一种用于减少能够估计船体外的磁场的船体上的磁性的方法和装置,即使当船舶在航行时船体上的磁性改变,并且能够减少 通过控制设置在船体中的所有消磁线圈的消磁电流值,任意深度处的船体外部的磁场。 解决方案:根据船体外部的磁场的膨胀系数,估计任意深度的船体外的磁场。 同时,基于先前计算的每个消磁线圈效应的船体外部的磁场的膨胀系数来估计每个消磁线圈在任意深度处的壳体外部的磁场。 使用最优参数搜索方法来规定用于最小化任意深度处船体外磁场的消磁电流值。 基于规定的消磁电流值,将电力传送到每个消磁线圈。 版权所有(C)2011,JPO&INPIT
    • 5. 发明专利
    • Method and device for calculating demagnetization current of hull
    • 用于计算HULL的去氧化电流的方法和装置
    • JP2011111084A
    • 2011-06-09
    • JP2009270871
    • 2009-11-28
    • Technical Research & Development Institute Ministry Of Defence防衛省技術研究本部長
    • NAKAMURA TAKASHIKIMURA TOSHIJIIKEO MAKOTO
    • B63G9/06H01F13/00
    • PROBLEM TO BE SOLVED: To provide a method and a device for calculating the demagnetization current of a hull deriving the demagnetization current at which the external magnetic field of the hull at an arbitrarily set adjusting surface or line is minimum without being affected by the skill or the experience of a worker. SOLUTION: The hull external magnetic field in a non-demagnetized state is measured at a magnetism measurement part or the like (ST1), and the demagnetization coil effect magnetic field is measured (ST2), an adjusting surface or an adjusting line is set (ST3). The hull magnetic field vector H N/D in a non-demagnetized state at the adjusting surface or the adjusting line is estimated and calculated by the inverse method based on the hull external magnetic field obtained in ST1 (ST4). The demagnetization coil effect magnetic field vectors H C1 -H Cn at the adjusting surface or the adjusting line are estimated and calculated by the inverse method based on each demagnetization coil effect magnetic field obtained in ST2 (ST5). Optimum solutions i C1 -i Cn to minimize the hull external magnetic field vector H F/D in the demagnetized state are obtained by the optimum parameter search method (ST6-ST8). COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:提供一种用于计算导出在任意设定的调整表面或线路处的船体的外部磁场最小而不受其影响的退磁电流的船体退磁电流的方法和装置 一个工人的技能或经验。 解决方案:在磁性测量部分等测量非退磁状态的船体外部磁场(ST1),测量去磁线圈效应磁场(ST2),调整面或调整线 (ST3)。 通过在ST1(ST4)中获得的船体外部磁场的逆方法来估计和计算在调整面或调整线处于非退磁状态的船体磁场矢量H N / D )。 通过基于每个去磁线圈效应磁场的逆方法来估计和计算在调整面或调整线处的去磁线圈效应磁场矢量H H Cn 在ST2(ST5)中获得。 通过最佳参数获得最小化解决方案,以最小化退磁状态下的船体外部磁场矢量H SB / F / D 搜索方法(ST6-ST8)。 版权所有(C)2011,JPO&INPIT
    • 6. 发明专利
    • Method and device for reducing uep of ship
    • 用于减少船舶UEP的方法和装置
    • JP2011088542A
    • 2011-05-06
    • JP2009243450
    • 2009-10-22
    • Technical Research & Development Institute Ministry Of Defence防衛省技術研究本部長
    • IKEO MAKOTOKIMURA TOSHIJIAKAGI NAOFUMI
    • B63B59/04C23F13/00
    • PROBLEM TO BE SOLVED: To provide a method and a device for reducing UEP capable of reducing UEP generated around a hull, and capable of improving safety in sailing of a ship. SOLUTION: First and second electrodes 10, 11 are mounted on the bottom of the ship 70. The first electrode 10 is arranged near a sacrificial anode 20, and the second electrode 11 is arranged near a propeller 71 (a flow-in part of corrosion current). A power sources 14 is provided in a path connecting the first and second electrodes 10, 11. The first electrode 10 is made negative (low potential) and the second electrode 11 is made positive (high potential). Thus, the current is made to flow from the second electrode 11 to the first electrode 10 so as to generate the second UEP as an arrow 91. COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:提供一种能够减少能够减少船体周围产生的UEP并且能够提高船舶航行安全性的UEP的方法和装置。 解决方案:第一和第二电极10,11安装在船70的底部。第一电极10设置在牺牲阳极20附近,第二电极11设置在螺旋桨71附近(流入 部分腐蚀电流)。 电源14设置在连接第一和第二电极10,11的路径中。第一电极10被制成负极(低电位),第二电极11被制成正极(高电位)。 因此,使电流从第二电极11流向第一电极10,以便产生第二UEP作为箭头91.版权所有:(C)2011,JPO&INPIT
    • 8. 发明专利
    • Underwater electric field measuring device and underwater electric field measuring method
    • 水下电场测量装置和水下电场测量方法
    • JP2011102762A
    • 2011-05-26
    • JP2009258053
    • 2009-11-11
    • Shimadzu CorpTechnical Research & Development Institute Ministry Of Defence株式会社島津製作所防衛省技術研究本部長
    • KUSADA KENTAROKIMURA TOSHIJINAKAMURA TAKASHIMISHINA NAOTO
    • G01R29/08
    • PROBLEM TO BE SOLVED: To provide an underwater electric field device capable of compensating a noise, and improving S/N in measurement, even when detecting an electromagnetic induction noise generated by swing of an underwater device. SOLUTION: In this underwater electric field measuring device including a gyro and a triaxial magnetic sensor in addition to an underwater electric field sensor, a first electromagnetic induction noise generated by motion of an electric wire at speed v is calculated from triaxial acceleration data detected by the gyro and triaxial magnetic data detected by the triaxial magnetic sensor (ST11, ST12, ST15), a second electromagnetic induction noise generated by rotation of the electric wire at angular velocity ω is calculated from triaxial angular velocity data detected by the gyro and triaxial magnetic data detected by the triaxial magnetic sensor (ST11, ST13, ST16), further the first and second electromagnetic induction noises are added together (ST17) to determine the electromagnetic induction noise generated by swing, and an electromagnetic induction noise acquired by calculation from measured underwater electric field data is subtracted therefrom, to thereby compensate the electromagnetic induction noise. COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:即使在检测到水下装置的摆动产生的电磁感应噪声时,也能够提供能够补偿噪声的水下电场装置,提高测量中的S / N。 解决方案:除了水下电场传感器之外,在包括陀螺仪和三轴磁传感器的这种水下电场测量装置中,通过三轴加速度数据计算由速度v的电线的运动产生的第一电磁感应噪声 通过由三轴磁传感器(ST11,ST12,ST15)检测到的陀螺仪和三轴磁数据检测到,以角速度ω由电线旋转产生的第二电磁感应噪声由陀螺仪检测的三轴角速度数据计算, 通过三轴磁传感器(ST11,ST13,ST16)检测的三轴磁数据,进一步将第一和第二电磁感应噪声相加在一起(ST17),以确定由摆动产生的电磁感应噪声,以及通过计算获得的电磁感应噪声 从其中减去测量的水下电场数据,从而补偿电磁 恶心感应噪音。 版权所有(C)2011,JPO&INPIT