会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明专利
    • Uep visualization method and device
    • UEP可视化方法和设备
    • JP2012046060A
    • 2012-03-08
    • JP2010189541
    • 2010-08-26
    • Technical Research & Development Institute Ministry Of Defence防衛省技術研究本部長
    • IKEO MAKOTOKUSADA KENTARO
    • B63B59/04B63B9/02B63G9/06G01R29/14
    • PROBLEM TO BE SOLVED: To provide a UEP (underwater electric potential) visualization method and device capable of visualizing UEP generated from a model ship.SOLUTION: A water tank 13 is filled with pH indicator 12 such as BTB liquid or the like to set the model ship 11 afloat in the pH indicator 12. The model ship 11 is made of the same material as a real ship. As shown by the flow 20 of the Underwater Electric Potential (UEP), the underwater electric potential flows from the anode 21 to the cathode 22 of the model ship 11. As a result, strongly-reactive indicator (acidic) 30 is detected in a vicinity of the anode 21, and strongly-reactive indicator (alkaline) 31 is detected in a vicinity of the cathode 22. As described above, the underwater electric potential (UEP) is visualized.
    • 要解决的问题:提供能够可视化从模型船生成的UEP的UEP(水下电位)可视化方法和装置。 解决方案:水箱13中填充有诸如BTB液体等的pH指示器12,以将模型船11漂浮在pH指示器12中。模型船11由与实际船舶相同的材料制成。 如水下电位(UEP)的流20所示,水下电势从模型船11的阳极21流向阴极22.结果,强反应性指示剂(酸性)30在 在阴极22附近检测阳极21的附近和强反应性指示剂(碱性)31。如上所述,水下电位(UEP)被可视化。 版权所有(C)2012,JPO&INPIT
    • 4. 发明专利
    • Underwater electric field measuring device and underwater electric field measuring method
    • 水下电场测量装置和水下电场测量方法
    • JP2011102762A
    • 2011-05-26
    • JP2009258053
    • 2009-11-11
    • Shimadzu CorpTechnical Research & Development Institute Ministry Of Defence株式会社島津製作所防衛省技術研究本部長
    • KUSADA KENTAROKIMURA TOSHIJINAKAMURA TAKASHIMISHINA NAOTO
    • G01R29/08
    • PROBLEM TO BE SOLVED: To provide an underwater electric field device capable of compensating a noise, and improving S/N in measurement, even when detecting an electromagnetic induction noise generated by swing of an underwater device. SOLUTION: In this underwater electric field measuring device including a gyro and a triaxial magnetic sensor in addition to an underwater electric field sensor, a first electromagnetic induction noise generated by motion of an electric wire at speed v is calculated from triaxial acceleration data detected by the gyro and triaxial magnetic data detected by the triaxial magnetic sensor (ST11, ST12, ST15), a second electromagnetic induction noise generated by rotation of the electric wire at angular velocity ω is calculated from triaxial angular velocity data detected by the gyro and triaxial magnetic data detected by the triaxial magnetic sensor (ST11, ST13, ST16), further the first and second electromagnetic induction noises are added together (ST17) to determine the electromagnetic induction noise generated by swing, and an electromagnetic induction noise acquired by calculation from measured underwater electric field data is subtracted therefrom, to thereby compensate the electromagnetic induction noise. COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:即使在检测到水下装置的摆动产生的电磁感应噪声时,也能够提供能够补偿噪声的水下电场装置,提高测量中的S / N。 解决方案:除了水下电场传感器之外,在包括陀螺仪和三轴磁传感器的这种水下电场测量装置中,通过三轴加速度数据计算由速度v的电线的运动产生的第一电磁感应噪声 通过由三轴磁传感器(ST11,ST12,ST15)检测到的陀螺仪和三轴磁数据检测到,以角速度ω由电线旋转产生的第二电磁感应噪声由陀螺仪检测的三轴角速度数据计算, 通过三轴磁传感器(ST11,ST13,ST16)检测的三轴磁数据,进一步将第一和第二电磁感应噪声相加在一起(ST17),以确定由摆动产生的电磁感应噪声,以及通过计算获得的电磁感应噪声 从其中减去测量的水下电场数据,从而补偿电磁 恶心感应噪音。 版权所有(C)2011,JPO&INPIT
    • 5. 发明专利
    • Current moment analysis device for vessel
    • 船舶流动分析装置
    • JP2011102096A
    • 2011-05-26
    • JP2009258037
    • 2009-11-11
    • Shimadzu CorpTechnical Research & Development Institute Ministry Of Defence株式会社島津製作所防衛省技術研究本部長
    • KUSADA KENTAROKIMURA TOSHIJINAKAMURA TAKASHIMISHINA NAOTO
    • B63B49/00G01R29/08
    • PROBLEM TO BE SOLVED: To provide a current moment analysis device capable of more accurately determining a current moment compared to conventional cases. SOLUTION: When a measured vessel 5 is made to pass through a neighborhood, a zero cross-point of an output waveform of a submerged electric field sensor 2 is detected. Based on positional information of the submerged electric field sensor 2 and positional information of the measured vessel 5 obtained during detection of the zero cross-point, an intermediate position of a current source of the measured vessel 5 is led out, and based on the intermediate position and the position of the current source (- side), a current source interval L of the measured vessel 5 is determined. A peak-to-peak value Va of the output waveform of the submerged electric field sensor 2 is stored. Next, as the same condition, the output waveform of the submerged electric field sensor 2 at a current value I [A] is led out by simulation, and a peak-to-peak value Vb at that time is determined. In the condition, a current value I=Va/Vb achieving the situation where the waveform is the peak-to-peak value Va is determined. Thus, by determining the current value I of the measured vessel 5, the current moment (L×I) of the vessel is determined. COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:提供一种与常规情况相比能够更准确地确定当前时刻的电流力矩分析装置。 解决方案:当测量容器5通过邻域时,检测到潜入电场传感器2的输出波形的零交叉点。 基于浸没电场传感器2的位置信息和在零交叉点检测时获得的测量容器5的位置信息,导出测量容器5的电流源的中间位置,并且基于中间 位置和电流源( - 侧)的位置,确定测量容器5的电流源间隔L. 存储了潜水电场传感器2的输出波形的峰 - 峰值Va。 接下来,作为相同的条件,通过模拟引导电流值I [A]的潜水电场传感器2的输出波形,并且确定此时的峰 - 峰值Vb。 在该条件下,确定实现波形为峰 - 峰值Va的情况的电流值I = Va / Vb。 因此,通过确定测定容器5的电流值I,确定容器的当前力矩(L×I)。 版权所有(C)2011,JPO&INPIT
    • 6. 发明专利
    • Method for estimating permanent magnetism of hull
    • 估计船体永久磁铁的方法
    • JP2011065612A
    • 2011-03-31
    • JP2009218212
    • 2009-09-19
    • Technical Research & Development Institute Ministry Of Defence防衛省技術研究本部長
    • NAKAMURA TAKASHIKIMURA TOSHIJIKUSADA KENTARO
    • G06F19/00B63G9/06G01R33/14
    • PROBLEM TO BE SOLVED: To provide a method for estimating permanent magnetism of a hull, which is capable of estimating permanent magnetism of the hull when a magnetic field is applied to the hull before degaussing is performed. SOLUTION: A specimen made of steel which is the same as the steel of the hull to be degaussed is created (ST1), and magnetization characteristics are measured by changing the magnetic field applied to the specimen (ST2). From the measured magnetization characteristics of a plurality of patterns, a Preisach's distribution chart for the steel is created (ST3). A hull numerical calculation model corresponding to a well-known numerical calculation method is created (ST4), and an applied magnetic field for each element is calculated (ST5). A Preisach's diagram corresponding to the applied magnetic field calculated is created for each element (ST6); permanent magnetism of each element is calculated based on the Preisach's distribution chart and the Preisach's diagram (ST7); permanent magnetism around the hull is estimated by the numerical calculation method based on the estimated value of permanent magnetism of each element (ST8); and an estimated value of permanent magnetism around the hull after magnetic processing is output (ST9). COPYRIGHT: (C)2011,JPO&INPIT
    • 要解决的问题:提供一种用于估计船体永磁的方法,其能够在执行消磁之前将磁场施加到船体时估计船体的永磁。 (ST1),通过改变施加到试样的磁场(ST2)来测量磁化特性。 根据测量的多个图案的磁化特性,创建了钢的Preisach分布图(ST3)。 创建对应于众所周知的数值计算方法的船体数值计算模型(ST4),并计算每个元素的施加磁场(ST5)。 针对每个元素创建与所应用的磁场相对应的Preisach图(ST6); 根据Preisach的分布图和Preisach的图(ST7)计算每个元素的永磁性; 通过基于每个元素的永磁估计值的数值计算方法(ST8)估计船体周围的永久磁性; 输出磁性处理后的船体周围的永磁的估计值(ST9)。 版权所有(C)2011,JPO&INPIT