会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • AUTONOMOUS BIOLOGICALLY BASED LEARNING TOOL
    • 自主生物学的学习工具
    • WO2009114387A1
    • 2009-09-17
    • PCT/US2009/036169
    • 2009-03-05
    • TOKYO ELECTRON LIMITEDKAUSHAL, SanjeevPATEL, Sukesh JanubhaiSUGISHIMA, Kenji
    • KAUSHAL, SanjeevPATEL, Sukesh JanubhaiSUGISHIMA, Kenji
    • G06F17/00
    • G06N5/04G05B13/0265G06N5/02G06N99/005
    • Autonomous biologically based learning tool systems and methods that the tool systems employ for learning and analysis are provided. An autonomous biologically based learning tool system includes (a) one or more tool systems that perform a set of specific tasks or processes, and generate assets and data related to the assets that characterize the various processes and associated tool performance; (b) an interaction manager that receives and formats data, and (c) an autonomous learning system based on biological principles of learning, such system comprises a memory platform and a processing platform that are defined recursively and communicate through a network. Autonomous tool systems can be deployed recursively to assemble increasingly complex autonomous tools. Knowledge generated and accumulated in the autonomous learning system(s) associated with individual or assembled complex autonomous tools can be cast into semantic networks that can be employed for learning and driving tool goals based on context.
    • 提供了自动生物学的学习工具系统和工具系统用于学习和分析的方法。 一种自主的基于生物学的学习工具系统包括(a)执行一组特定任务或过程的一个或多个工具系统,并生成与表征各种过程和相关工具性能的资产相关的资产和数据; (b)接收和格式化数据的交互管理器,以及(c)基于生物学习原理的自主学习系统,该系统包括递归定义并通过网络进行通信的存储器平台和处理平台。 自动工具系统可以递归部署,以组合日益复杂的自主工具。 在与个人或组装的复杂自主工具相关的自主学习系统中生成和积累的知识可以被投入到可以用于基于上下文学习和驱动工具目标的语义网络中。
    • 7. 发明申请
    • AUTONOMOUS TOOL PARAMETER IMPACT IDENTIFICATION FOR SEMICONDUCTOR MANUFACTURING
    • 自主工具参数对半导体制造的影响识别
    • WO2014074221A1
    • 2014-05-15
    • PCT/US2013/059715
    • 2013-09-13
    • TOKYO ELECTRON LIMITEDKAUSHAL, Sanjeev
    • KAUSHAL, SanjeevPATEL, Sukesh JanubhaiPOLAK, WolfgangWATERMAN, Aaron ArcherWOLFE, Orion
    • H01L21/02G06F19/00
    • G05B19/41875G05B2219/32187G05B2219/45031G06N99/005Y02P90/22Y02P90/86
    • A system and method for autonomously determining the impact of respective tool parameters on tool performance in a semiconductor manufacturing system is provided. A parameter impact identification system receives tool parameter and tool performance data for one or more process runs of the semiconductor fabrication system and generates a separate function for each tool parameter characterizing the behavior of a tool performance indicator in terms of a single one of the tool parameters. Each function is then scored according to how well the function predicts the actual behavior of the tool performance indicator, or based on a determined sensitivity of the tool performance indicator to changes in the single tool parameter. The tool parameters are then ranked based on these scores, and a reduced set of critical tool parameters is derived based on the ranking. The tool performance indicator can then be modeled based on this reduced set of tool parameters.
    • 提供了一种用于自主确定各个工具参数对半导体制造系统中的工具性能的影响的系统和方法。 参数影响识别系统接收用于半导体制造系统的一个或多个过程运行的工具参数和工具性能数据,并且针对每个工具参数生成表征工具性能指标的行为的单独函数,所述工具参数根据工具参数中的单个参数 。 然后根据功能预测工具性能指标的实际行为或者根据工具性能指标对单个工具参数的变化确定的灵敏度来评分每个功能。 然后根据这些分数对工具参数进行排序,并根据排序推导出一组减少的关键工具参数。 然后可以基于这组缩减的工具参数对工具性能指标进行建模。