会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Micrometric direct-write methods for patterning conductive material and applications to flat panel display repair
    • 用于图案化导电材料的微米直写方法和应用于平板显示器维修
    • US20050235869A1
    • 2005-10-27
    • US11065694
    • 2005-02-25
    • Sylvain Cruchon-DupeyratHua ZhangRobert ElghanianLinette DemersNabil AmroSandeep DisawalJohn Bussan
    • Sylvain Cruchon-DupeyratHua ZhangRobert ElghanianLinette DemersNabil AmroSandeep DisawalJohn Bussan
    • C09D11/00C09D11/10H05K3/12
    • C09D11/101C23C18/06C23C18/08C23C18/161C23C18/1667C23C18/1689C23C18/1692G03F7/0002H01L21/288H05K3/105H05K3/1241H05K2203/0195
    • A new, low temperature method for directly writing conductive metal traces with micron and sub-micron sized features. In this method, a flat beam is used, such as an AFM cantilever, with or without a tip, to draw traces of metal precursor ink onto a substrate. The dimensions of the metal traces can be directly controlled by the geometry of the cantilever, so that one can controllably deposit traces from 1 micron to over 100 microns wide with microfabricated cantilevers. Cantilevers with sharp tips can be used to further shrink the minimum features sizes to sub-micron scale. The height of the features can be increased by building layers of similar or different material. To obtain highly conductive and robust patterns with this deposition method, two general ink formulation strategies were designed. The key component of both ink systems is nanoparticles with diameters less than 100 nm. Because nanoparticles typically have significantly lower melting points than the bulk material, one can fuse, sinter, or coalesce collections of discrete particles into continuous (poly)crystalline films at very low temperatures (less than about 300° C., and as low as about 120° C.). In the first strategy, one can disperse hydrocarbon-capped nanoparticles in a suitable solvent, deposit them on a surface in the form of a pattern, and then anneal the film by heating to form continuous metallic patterns. In the second strategy, one can deliver metal compounds to the surface in the presence of a reducing matrix and then form nanoparticles in situ by heating that subsequently coalesce to form continuous metallic patterns. In studies with platinum and gold inks, both nanoparticle-based methods yield micron sized traces on glass and oxidized silicon that have low resistivity (4 microohm·cm), and excellent adhesion properties.
    • 一种用于直接写入具有微米和亚微米尺寸特征的导电金属迹线的新的低温方法。 在该方法中,使用平面光束,例如具有或不具有尖端的AFM悬臂,以将金属前体油墨的痕迹绘制到基底上。 金属轨迹的尺寸可以通过悬臂的几何形状直接控制,从而可以通过微加工的悬臂将可追溯的微量线从1微米到100微米宽的沉积物进行控制。 具有尖锐尖端的悬臂可用于进一步将最小特征尺寸缩小至亚微米级。 通过构建相似或不同材料的层可以增加特征的高度。 为了通过该沉积方法获得高导电性和鲁棒性的图案,设计了两种一般的油墨配方策略。 两种油墨系统的关键组分是直径小于100nm的纳米颗粒。 因为纳米颗粒通常具有比散装材料显着更低的熔点,所以可以在非常低的温度(小于约300℃,低至约低于约300℃)下将离散颗粒的集合熔合,烧结或聚结成连续(多)晶体膜 120℃)。 在第一种策略中,可以将烃封端的纳米颗粒分散在合适的溶剂中,将其沉积在图案形式的表面上,然后通过加热退火以形成连续的金属图案。 在第二种策略中,可以在还原性基质的存在下将金属化合物递送到表面,然后通过加热原位形成纳米颗粒,随后聚结形成连续的金属图案。 在使用铂金和金色墨水的研究中,基于纳米粒子的方法都会在玻璃上产生微米尺寸的痕迹和具有低电阻率(4微欧姆·厘米)的氧化硅,并具有优异的粘合性能。