会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Sentence realization model for a natural language generation system
    • 自然语言生成系统的句子实现模型
    • US07526424B2
    • 2009-04-28
    • US10103163
    • 2002-03-20
    • Simon Corston-OliverMichael GamonEric RinggerRobert C. MooreZhu Zhang
    • Simon Corston-OliverMichael GamonEric RinggerRobert C. MooreZhu Zhang
    • G06F17/27
    • G06F17/2881
    • The present invention is a sentence realization system that processes an abstract linguistic representation (ALR) of a sentence into a structure that can be fully realizable. The system includes a tree conversion component that receives the ALR and generates a basic syntax tree from the ALR. A global movement component then receives the basic syntax tree and hierarchically orders child nodes in that syntax tree relative to ancestor nodes. An intra-constituent ordering component then establishes a linear order among the nodes such that the syntax tree is fully ordered. A surface cleanup component receives the fully ordered tree and performs a number of realization operations to generate surface realizations for constituents that are still represented in an abstract way in the fully ordered syntax tree.
    • 本发明是将句子的抽象语言表示(ALR)处理成可以完全实现的结构的句子实现系统。 该系统包括接收ALR并从ALR生成基本语法树的树转换组件。 然后,全局运动组件接收基本语法树,并相对于祖先节点分层排序该语法树中的子节点。 然后,内部组件排序组件在节点之间建立一个线性顺序,使得语法树被完全排序。 表面清理组件接收完全有序的树并执行多个实现操作,以便在完全有序的语法树中以抽象方式表示的组成部分生成表面实现。
    • 6. 发明申请
    • Technique for document editorial quality assessment
    • 文件编辑质量评估技术
    • US20060100852A1
    • 2006-05-11
    • US10969119
    • 2004-10-20
    • Michael GamonAnthony Aue
    • Michael GamonAnthony Aue
    • G06F17/27
    • G06F17/271G06F17/2785
    • A computer-implemented system and method for assessing the editorial quality of a textual unit (document, paragraph or sentence) is provided. The method includes generating a plurality of training-time feature vectors by automatically extracting features from first and last versions of training documents. The method also includes training a machine-learned classifier based on the plurality of training-time feature vectors. A run-time feature vector is generated for the textual unit to be assessed by automatically extracting features from the textual unit. The run-time feature vector is evaluated using the machine-learned classifier to provide an assessment of the editorial quality of the textual unit.
    • 提供了一种用于评估文本单元(文档,段落或句子)的编辑质量的计算机实现的系统和方法。 该方法包括通过自动提取来自训练文档的第一和最后版本的特征来生成多个训练时特征向量。 该方法还包括基于多个训练时间特征向量训练机器学习分类器。 通过自动从文本单元中提取特征,为要评估的文本单元生成运行时特征向量。 运行时特征向量使用机器学习分类器进行评估,以提供对文本单元的编辑质量的评估。
    • 9. 发明授权
    • Technique for document editorial quality assessment
    • 文件编辑质量评估技术
    • US07835902B2
    • 2010-11-16
    • US10969119
    • 2004-10-20
    • Michael GamonAnthony Aue
    • Michael GamonAnthony Aue
    • G06F17/28G06F17/21G06F7/00
    • G06F17/271G06F17/2785
    • A computer-implemented system and method for assessing the editorial quality of a textual unit (document, paragraph or sentence) is provided. The method includes generating a plurality of training-time feature vectors by automatically extracting features from first and last versions of training documents. The method also includes training a machine-learned classifier based on the plurality of training-time feature vectors. A run-time feature vector is generated for the textual unit to be assessed by automatically extracting features from the textual unit. The run-time feature vector is evaluated using the machine-learned classifier to provide an assessment of the editorial quality of the textual unit.
    • 提供了一种用于评估文本单元(文档,段落或句子)的编辑质量的计算机实现的系统和方法。 该方法包括通过自动提取来自训练文档的第一和最后版本的特征来生成多个训练时特征向量。 该方法还包括基于多个训练时间特征向量训练机器学习分类器。 通过自动从文本单元中提取特征,为要评估的文本单元生成运行时特征向量。 运行时特征向量使用机器学习分类器进行评估,以提供对文本单元的编辑质量的评估。