会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • COMPUTATIONALLY EFFICIENT LOCAL IMAGE DESCRIPTORS
    • 计算效率高的局部图像描述符
    • US20100246969A1
    • 2010-09-30
    • US12410469
    • 2009-03-25
    • Simon A. J. WinderGang Hua
    • Simon A. J. WinderGang Hua
    • G06K9/46
    • G06K9/4671
    • Described is a technology in which an image (or image patch) is processed into a highly discriminative and computationally efficient image descriptor that has a low storage footprint. Feature vectors are generated from an image (or image patch), and further processed via a polar Gaussian pooling approach (a DAISY configuration) into a descriptor. The descriptor is normalized, and processed with a dimension reduction component and a quantization component (based upon dynamic range reduction) into a finalized descriptor, which may be further compressed. The resulting descriptors have significantly reduced error rates and significantly smaller sizes than other image descriptors (such as SIFT-based descriptors).
    • 描述了一种技术,其中图像(或图像贴片)被处理成具有低存储空间的高度辨别性和计算效率的图像描述符。 特征向量从图像(或图像块)生成,并且通过极高斯混合方法(DAISY配置)进一步处理成描述符。 描述符被归一化,并且将尺寸减小分量和量化分量(基于动态范围缩小)处理成最终描述符,其可被进一步压缩。 所得到的描述符与其他图像描述符(例如基于SIFT的描述符)相比,显着降低了错误率和显着更小的大小。
    • 2. 发明授权
    • Local image descriptors using linear discriminant embedding
    • 局部图像描述符使用线性判别嵌入
    • US08023742B2
    • 2011-09-20
    • US11868988
    • 2007-10-09
    • Matthew Alun BrownGang HuaSimon A. J. Winder
    • Matthew Alun BrownGang HuaSimon A. J. Winder
    • G06K9/46G06K9/68
    • G06K9/4609G06K9/6256
    • To render the comparison of image patches more efficient, the data of an image patch can be projected into a smaller-dimensioned subspace, resulting in a descriptor of the image patch. The projection into the descriptor subspace is known as a linear discriminant embedding, and can be performed with reference to a linear discriminant embedding matrix. The linear discriminant embedding matrix can be constructed from projection vectors that maximize those elements that are shared by matching image patches or that are used to distinguish non-matching image patches, while also minimizing those elements that are common to non-matching image patches or that distinguish matching image patches. The determination of such projection vectors can be limited such that only orthogonal vectors comprise the linear discriminant embedding matrix. The determination of the linear discriminant embedding matrix can likewise be constrained to avoid overfitting to training data.
    • 为了使图像补丁的比较更加有效,图像补丁的数据可以投影到较小尺寸的子空间中,从而导致图像补丁的描述符。 将描述符子空间的投影称为线性判别嵌入,并且可以参照线性判别嵌入矩阵来执行。 线性判别嵌入矩阵可以由投影向量构成,该矢量最大化匹配图像片段共享的元素,或者用于区分不匹配的图像片段,同时最小化非匹配图像片段常见的那些元素,或者 区分匹配的图像补丁。 可以限制这种投影向量的确定,使得仅正交向量包括线性判别嵌入矩阵。 线性判别嵌入矩阵的确定同样可以被限制,以避免训练数据过度拟合。
    • 3. 发明申请
    • Local Image Descriptors Using Linear Discriminant Embedding
    • 本地图像描述符使用线性判别嵌入
    • US20090091802A1
    • 2009-04-09
    • US11868988
    • 2007-10-09
    • Matthew Alun BrownGang HuaSimon A. J. Winder
    • Matthew Alun BrownGang HuaSimon A. J. Winder
    • H04N1/40
    • G06K9/4609G06K9/6256
    • To render the comparison of image patches more efficient, the data of an image patch can be projected into a smaller-dimensioned subspace, resulting in a descriptor of the image patch. The projection into the descriptor subspace is known as a linear discriminant embedding, and can be performed with reference to a linear discriminant embedding matrix. The linear discriminant embedding matrix can be constructed from projection vectors that maximize those elements that are shared by matching image patches or that are used to distinguish non-matching image patches, while also minimizing those elements that are common to non-matching image patches or that distinguish matching image patches. The determination of such projection vectors can be limited such that only orthogonal vectors comprise the linear discriminant embedding matrix. The determination of the linear discriminant embedding matrix can likewise be constrained to avoid overfitting to training data.
    • 为了使图像补丁的比较更有效率,图像补丁的数据可以投影到更小尺寸的子空间中,导致图像补丁的描述符。 将描述符子空间的投影称为线性判别嵌入,并且可以参照线性判别嵌入矩阵来执行。 线性判别嵌入矩阵可以由投影向量构成,该投影矢量使由匹配的图像补丁共享的元素最大化,或者用于区分非匹配图像补丁的同时也最小化非匹配图像补丁常见的那些元素,或者 区分匹配的图像补丁。 可以限制这种投影向量的确定,使得仅正交向量包括线性判别嵌入矩阵。 线性判别嵌入矩阵的确定同样可以被限制,以避免训练数据过度拟合。
    • 7. 发明申请
    • INTERACTIVE CONCEPT LEARNING IN IMAGE SEARCH
    • 图像搜索中的交互式概念学习
    • US20090154795A1
    • 2009-06-18
    • US11954246
    • 2007-12-12
    • Desney S. TanAshish KapoorSimon A. J. WinderJames A. Fogarty
    • Desney S. TanAshish KapoorSimon A. J. WinderJames A. Fogarty
    • G06K9/62
    • G06F17/30247G06K9/6215
    • An interactive concept learning image search technique that allows end-users to quickly create their own rules for re-ranking images based on the image characteristics of the images. The image characteristics can include visual characteristics as well as semantic features or characteristics, or may include a combination of both. End-users can then rank or re-rank any current or future image search results according to their rule or rules. End-users provide examples of images each rule should match and examples of images the rule should reject. The technique learns the common image characteristics of the examples, and any current or future image search results can then be ranked or re-ranked according to the learned rules.
    • 一种交互式概念学习图像搜索技术,允许最终用户基于图像的图像特征快速创建自己的重新排序图像的规则。 图像特征可以包括视觉特征以及语义特征或特征,或者可以包括两者的组合。 然后,最终用户可以根据其规则或规则对当前或将来的图像搜索结果进行排名或重新排序。 最终用户提供每个规则应该匹配的图像的示例以及规则应该拒绝的图像的示例。 该技术学习示例的常见图像特征,然后可以根据学习的规则对任何当前或将来的图像搜索结果进行排名或重新排序。
    • 9. 发明授权
    • Interactive concept learning in image search
    • 图像搜索中的互动概念学习
    • US09008446B2
    • 2015-04-14
    • US13429342
    • 2012-03-24
    • Desney S. TanAshish KapoorSimon A. J. WinderJames A. Fogarty
    • Desney S. TanAshish KapoorSimon A. J. WinderJames A. Fogarty
    • G06K9/62G06F17/30
    • G06F17/30247G06K9/6215
    • An interactive concept learning image search technique that allows end-users to quickly create their own rules for re-ranking images based on the image characteristics of the images. The image characteristics can include visual characteristics as well as semantic features or characteristics, or may include a combination of both. End-users can then rank or re-rank any current or future image search results according to their rule or rules. End-users provide examples of images each rule should match and examples of images the rule should reject. The technique learns the common image characteristics of the examples, and any current or future image search results can then be ranked or re-ranked according to the learned rules.
    • 一种交互式概念学习图像搜索技术,允许最终用户基于图像的图像特征快速创建自己的重新排序图像的规则。 图像特征可以包括视觉特征以及语义特征或特征,或者可以包括两者的组合。 然后,最终用户可以根据其规则或规则对当前或将来的图像搜索结果进行排名或重新排序。 最终用户提供每个规则应该匹配的图像的示例以及规则应该拒绝的图像的示例。 该技术学习示例的常见图像特征,然后可以根据学习的规则对任何当前或将来的图像搜索结果进行排名或重新排序。
    • 10. 发明申请
    • INTERACTIVE CONCEPT LEARNING IN IMAGE SEARCH
    • 图像搜索中的交互式概念学习
    • US20120183206A1
    • 2012-07-19
    • US13429342
    • 2012-03-24
    • Desney S. TanAshish KapoorSimon A. J. WinderJames A. Fogarty
    • Desney S. TanAshish KapoorSimon A. J. WinderJames A. Fogarty
    • G06K9/62
    • G06F17/30247G06K9/6215
    • An interactive concept learning image search technique that allows end-users to quickly create their own rules for re-ranking images based on the image characteristics of the images. The image characteristics can include visual characteristics as well as semantic features or characteristics, or may include a combination of both. End-users can then rank or re-rank any current or future image search results according to their rule or rules. End-users provide examples of images each rule should match and examples of images the rule should reject. The technique learns the common image characteristics of the examples, and any current or future image search results can then be ranked or re-ranked according to the learned rules.
    • 一种交互式概念学习图像搜索技术,允许最终用户基于图像的图像特征快速创建自己的重新排序图像的规则。 图像特征可以包括视觉特征以及语义特征或特征,或者可以包括两者的组合。 然后,最终用户可以根据其规则或规则对当前或将来的图像搜索结果进行排名或重新排序。 最终用户提供每个规则应该匹配的图像的示例以及规则应该拒绝的图像的示例。 该技术学习示例的常见图像特征,然后可以根据学习的规则对任何当前或将来的图像搜索结果进行排名或重新排序。