会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • ELECTROMAGNETIC WAVE MEASURING APPARATUS, MEASURING METHOD, PROGRAM, AND RECORDING MEDIUM
    • 电磁波测量装置,测量方法,程序和记录介质
    • US20110001048A1
    • 2011-01-06
    • US12731617
    • 2010-03-25
    • Shigeki NISHINAMotoki IMAMURAAkiyoshi IRISAWATomoyu YAMASHITAEiji KATO
    • Shigeki NISHINAMotoki IMAMURAAkiyoshi IRISAWATomoyu YAMASHITAEiji KATO
    • G01J5/28
    • G01N21/3581G01N21/3563
    • According to the present invention, an electromagnetic wave measurement device includes an electromagnetic wave output device, an electromagnetic wave detector, a relative position changing unit, a delay period recording unit, a phase deriving unit, a delay-corrected phase deriving unit, a sinogram deriving unit, and an image deriving unit. The electromagnetic wave output device outputs an electromagnetic wave having a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] toward a device under test and a container storing at least a part of the device under test. The electromagnetic wave detector detects the electromagnetic wave which has transmitted through the device under test. The relative position changing unit changes a relative position of an intersection at which an optical path of the electromagnetic wave transmitting through the device under test and the device under test intersect with respect to the device under test. The delay period recording unit records a delay period of the electromagnetic wave caused by a transmission of the electromagnetic wave through the container. The phase deriving unit that derives, based on a detected result by the electromagnetic wave detector, a phase in the frequency domain of the electromagnetic wave which has transmitted through the device under test. The delay-corrected phase deriving unit that derives a delay-corrected phase obtained by subtracting an integral of the delay period with respect to the frequency from the phase. The sinogram deriving unit that derives a sinogram based on a derived result by the delay-corrected phase deriving unit. The image deriving unit derives, based on the sinogram, an image of a cross section of the device under test including the intersection.
    • 根据本发明,电磁波测量装置包括电磁波输出装置,电磁波检测器,相对位置改变单元,延迟周期记录单元,相位导出单元,延迟校正相位导出单元,正弦图 导出单元和图像导出单元。 电磁波输出装置向受试装置输出频率等于或大于0.01 [THz]且等于或小于100 [THz]的电磁波,以及容纳至少部分被测器件的容器。 电磁波检测器检测已通过被测器件传输的电磁波。 相对位置改变单元改变通过被测设备传输的电磁波的光路与被测设备相对于被测设备相交的交点的相对位置。 延迟周期记录单元记录由电磁波的发射引起的电磁波的延迟时间通过容器。 基于电磁波检测器检测结果的相位导出单元,通过被测设备传输的电磁波的频域中的相位。 延迟校正相位导出单元,其导出通过从该相位减去相对于频率的延迟周期的积分而获得的延迟校正相位。 基于经延迟校正的相位导出单元的导出结果导出正弦图的正弦图导出单元。 图像导出单元基于正弦图导出被测设备的横截面的图像,包括交点。
    • 2. 发明申请
    • ELECTROMAGNETIC WAVE MEASURING APPARATUS, MEASURING METHOD, PROGRAM, AND RECORDING MEDIUM
    • 电磁波测量装置,测量方法,程序和记录介质
    • US20100295534A1
    • 2010-11-25
    • US12731483
    • 2010-03-25
    • Shigeki NISHINAMotoki IMAMURAAkiyoshi IRISAWATomoyu YAMASHITAEiji KATOKodo KAWASE
    • Shigeki NISHINAMotoki IMAMURAAkiyoshi IRISAWATomoyu YAMASHITAEiji KATOKodo KAWASE
    • G01R23/02
    • G01J5/0285G01N21/3563G01N21/3581G01N21/8806
    • According to the electromagnetic wave measurement device of the present invention, an electromagnetic wave output device outputs an electromagnetic wave having a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] toward a device under test. An electromagnetic wave detector detects the electromagnetic wave which has transmitted through the device under test. A relative position changing unit changes a relative position of an intersection across which an optical path of the electromagnetic wave transmitting through the device under test and the device under test intersect with respect to the device under test. A characteristic value deriving unit derives a characteristic value of the electromagnetic wave based on a detection result of the electromagnetic wave detector while the characteristic value is associated with an assumed relative position which is the relative position if it is assumed that the electromagnetic wave is not refracted by the device under test. A first association correction unit changes the assumed relative position to an actual relative position, which is the relative position if the refraction of the electromagnetic wave by the device under test is considered, thereby associating the result derived by the characteristic value deriving unit with the actual relative position. A corrected characteristic value deriving unit that derives the characteristic value associated with a predetermined relative position based on an output from the first association correction unit.
    • 根据本发明的电磁波测量装置,电磁波输出装置向被测设备输出等于或大于0.01 [THz]且等于或小于100 [THz]的频率的电磁波。 电磁波检测器检测已经通过被测设备的电磁波。 相对位置改变单元改变通过被测器件发送的电磁波的光路与被测器件相对于被测器件相交的相交位置的相对位置。 特征值导出单元基于电磁波检测器的检测结果导出电磁波的特征值,而如果假设电磁波未被折射,则特征值与作为相对位置的假定相对位置相关联 由被测设备 第一关联校正单元将所假定的相对位置改变为实际相对位置,如果考虑被测设备的电磁波的折射,则该相对位置是相对位置,从而将由特征值导出单元导出的结果与实际相对位置 相对位置。 校正特征值导出单元,其基于来自第一关联校正单元的输出导出与预定相对位置相关联的特征值。
    • 3. 发明申请
    • ELECTROMAGNETIC WAVE MEASURING APPARATUS, MEASUREMENT METHOD, A PROGRAM, AND A RECORDING MEDIUM
    • 电磁波测量装置,测量方法,程序和记录介质
    • US20100271001A1
    • 2010-10-28
    • US12487177
    • 2009-06-18
    • Eiji KATOShigeki NISHINAMotoki IMAMURAAkiyoshi IRISAWATomoyu YAMASHITA
    • Eiji KATOShigeki NISHINAMotoki IMAMURAAkiyoshi IRISAWATomoyu YAMASHITA
    • G01R23/16
    • G01N21/3581
    • According to the present invention, the CT is carried out based on parameters other than the absorption rate. An electromagnetic wave measurement device includes an electromagnetic wave output device 2 which outputs an electromagnetic wave at a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] toward a device under test 1, an electromagnetic wave detector 4 which detects the electromagnetic wave which has transmitted through the device under test 1, a relative position changing unit 6 which changes a relative position of an intersection 100 at which an optical path of the electromagnetic wave transmitting through the device under test 1 and the device under test 1 intersect with respect to the device under test 1, a phase deriving unit 12 which derives, based on a detected result by the electromagnetic wave detector 4, a phase in the frequency domain of the electromagnetic wave which has transmitted through the device under test 1, a sinogram deriving unit 16 which derives a sinogram based on a derived result by the phase deriving unit 12, and a cross sectional image deriving unit 18 that derives, based on the sinogram, an image of a cross section of the device under test 1 including a trajectory of the intersection 100.
    • 根据本发明,根据吸收速度以外的参数进行CT。 电磁波测量装置包括电磁波输出装置2,其以等于或大于0.01 [THz]且等于或小于100 [THz]的频率朝向被测设备1输出电磁波,电磁波检测器 4,其检测通过被测试装置1发送的电磁波;相对位置改变单元6,其改变通过被测试设备1发送的电磁波的光路和设备的相交位置100; 测试1相对于被测设备1相交,相位导出单元12基于电磁波检测器4的检测结果,导出已经通过设备传输的电磁波的频域中的相位 测试1,基于相位导出单元12的导出结果导出正弦图的正弦图导出单元16,以及横截面ima ge导出单元18基于正弦图得出包括交会100的轨迹的被测设备1的横截面的图像。
    • 6. 发明申请
    • CARRIER AND ADHESION AMOUNT MEASURING APPARATUS, AND MEASURING METHOD, PROGRAM, AND RECORDING MEDIUM OF THE SAME
    • 载体和粘合量测量装置及其测量方法,程序和记录介质
    • US20110097649A1
    • 2011-04-28
    • US12608208
    • 2009-10-29
    • Motoki IMAMURAShigeki NISHINA
    • Motoki IMAMURAShigeki NISHINA
    • H01M4/64H01M4/88G06F19/00
    • G01N21/17G01N21/3504G01N21/3581
    • The present invention measures a quantity of attachment (such as density) of a material (such as catalyst and promoter) attached to a carrier. A carrier 1 includes attachment holes 12 to which a catalyst 24 attaches, and non-attachment holes 14 to which the catalyst 24 does not attach, where extension directions of the attachment holes 12 and the non-attachment holes 14 are parallel with each other (perpendicular to a first end surface 1a), and are opened on the first end surface 1a and a second end surface 1b. An attachment quantity measurement device includes an electromagnetic wave output device 2 that outputs a terahertz wave at a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] toward the carrier 1, an electromagnetic wave detector 4 that detects the terahertz wave which has transmitted through the carrier 1, a reference value deriving unit 7 that derives, based on a result detected by the electromagnetic wave detector 4, any one of an absorption rate, a group delay, and a dispersion of the terahertz wave in the non-attachment holes 14, and an attachment quantity deriving unit 8 that derives, based on the result detected by the electromagnetic wave detector 4 and the result derived by the reference value deriving unit 7, a weight or a density of the catalyst 24 present in the attachment holes 12.
    • 本发明测量附着于载体的材料(如催化剂和助催化剂)的附着量(如密度)。 载体1包括催化剂24附着的附接孔12和催化剂24未附着的未安装孔14,其中安装孔12和非安装孔14的延伸方向彼此平行( 垂直于第一端面1a),并且在第一端面1a和第二端面1b上开口。 安装量测量装置包括电磁波输出装置2,其以等于或大于0.01 [THz]且等于或小于100 [THz]的频率向载体1输出太赫兹波;电磁波检测器4,其 检测通过载波1发送的太赫兹波;基准值导出单元7,其基于由电磁波检测器4检测到的结果导出太赫兹的吸收率,群延迟和色散中的任何一个 基于由电磁波检测器4检测到的结果和由基准值导出单元7导出的结果导出催化剂的重量或密度的附着量导出单元8, 24存在于附接孔12中。
    • 7. 发明申请
    • ELECTROMAGNETIC WAVE MEASURING APPARATUS
    • 电磁波测量装置
    • US20110075127A1
    • 2011-03-31
    • US12616992
    • 2009-11-12
    • Shigeki NISHINAMotoki IMAMURA
    • Shigeki NISHINAMotoki IMAMURA
    • G01J3/00
    • G01N21/3581
    • A desired spatial resolution upon a measurement can be attained by making an electromagnetic wave including a terahertz wave (frequency thereof is equal to or more than 0.01 [THz], and equal to or less than 100 [THz]) incident to a device under test. An electromagnetic wave measurement device includes an incident lens which makes an electromagnetic wave to be measured having a frequency equal to or more than 0.01 [THz] and equal to or less than 100 [THz] incident to a device under a test while decreasing a beam diameter of the electromagnetic wave to be measured, a scanning stage which rotates, about a line orthogonal to an optical axis of the incident lens as a rotational axis, the device under the test or the optical axis, and an electromagnetic wave detector which detects the electromagnetic wave to be measured which has transmitted through the device under the test, where a coordinate on the optical axis of a position which gives the minimum value d of the beam diameter is different from a coordinate on the optical axis of the rotational axis.
    • 测量时的期望空间分辨率可以通过使包含入射到被测器件的太赫兹波(其频率等于或大于0.01 [THz],等于或小于100 [THz])的电磁波来实现 。 电磁波测量装置包括入射透镜,该入射透镜使得测量的电磁波具有等于或大于在测试时入射到设备的0.01 [THz]且等于或小于100 [THz]的频率,同时减小光束 要测量的电磁波的直径,围绕与入射透镜的光轴正交的线作为旋转轴旋转的扫描台,被测装置或光轴的电磁波检测器,以及检测 通过测试中的装置传输的要测量的电磁波,其中给出光束直径的最小值d的位置的光轴上的坐标不同于旋转轴的光轴上的坐标。
    • 8. 发明申请
    • CARRIER AND ADHESION AMOUNT MEASURING APPARATUS, AND MEASURING METHOD, PROGRAM, AND RECORDING MEDIUM OF THE SAME
    • 载体和粘合量测量装置及其测量方法,程序和记录介质
    • US20130075612A1
    • 2013-03-28
    • US13679081
    • 2012-11-16
    • Motoki IMAMURAShigeki NISHINA
    • Motoki IMAMURAShigeki NISHINA
    • G01N21/17
    • G01N21/17G01N21/3504G01N21/3581
    • A carrier includes attachment holes to which a catalyst attaches, and non-attachment holes to which the catalyst does not attach. An attachment quantity measurement device includes an electromagnetic wave output device that outputs a terahertz wave toward the carrier, an electromagnetic wave detector that detects the terahertz wave which has transmitted through the carrier, a reference value obtainer that obtains, based on a result detected by the electromagnetic wave detector, any one of an absorption rate, a group delay, and a dispersion of the terahertz wave in the non-attachment holes, and an attachment quantity obtainer that obtains, based on the result detected by the electromagnetic wave detector and the result obtained by the reference value obtainer, a weight or a density of the catalyst present in the attachment holes.
    • 载体包括催化剂附着的附着孔和催化剂不附着的不附着孔。 安装量测量装置包括向载体输出太赫兹波的电磁波输出装置,检测通过载波传输的太赫兹波的电磁波检测器,基于由该载波检测到的结果获得的参考值获取器 电磁波检测器,非附着孔中的太赫兹波的吸收率,群延迟和色散中的任一种,以及基于由电磁波检测器检测出的结果和结果获得的安装量获取器 通过参考值获得器获得,存在于附接孔中的催化剂的重量或密度。
    • 9. 发明申请
    • HOLDING FIXTURE, PLACEMENT METHOD OF HOLDING FIXTURE, AND MEASUREMENT METHOD
    • 保持夹具,夹具的放置方法和测量方法
    • US20100321682A1
    • 2010-12-23
    • US12776538
    • 2010-05-10
    • Eiji KATOShigeki NISHINAKodo KAWASE
    • Eiji KATOShigeki NISHINAKodo KAWASE
    • G01N21/01
    • G01N21/3581G01N21/4795
    • A container according to the present invention contains at least a part of a device under test to be measured by a terahertz wave measurement device. The container includes a gap portion that internally disposes at least a part of the device under test, and an enclosure portion that includes a first flat surface portion and a second flat surface portion, and disposes the gap portion between the first flat surface portion and the second flat surface portion, thereby enclosing the gap portion. Moreover, a relationship n1−0.1≦n2≦n1+0.1 holds where n2 denotes a refractive index of the enclosure portion, and n1 denotes a refractive index of the device under test. Further, the first flat surface portion intersects at the right angle with a travel direction of the terahertz wave.
    • 根据本发明的容器包含被太赫兹波测量装置测量的被测器件的至少一部分。 容器包括内部配置被测设备的至少一部分的间隙部分和包括第一平坦表面部分和第二平坦表面部分的封闭部分,并且将间隙部分设置在第一平坦表面部分和第二平坦部分之间 第二平坦表面部分,从而包围间隙部分。 此外,关系n1-0.1≦̸ n2≦̸ n1 + 0.1,其中n2表示封装部分的折射率,n1表示被测器件的折射率。 此外,第一平面部分与太赫兹波的行进方向成直角相交。
    • 10. 发明申请
    • CONTAINER, CONTAINER POSITIONING METHOD, AND MEASURING METHOD
    • 集装箱,集装箱定位方法和测量方法
    • US20110057103A1
    • 2011-03-10
    • US12617129
    • 2009-11-12
    • Shigeki NISHINAShigeaki NAITOH
    • Shigeki NISHINAShigeaki NAITOH
    • G01J5/00G01R31/26
    • G01N21/3581G01N21/3563
    • A container according to the present invention contains at least a part of a device under test to be measured by a terahertz wave measurement device. The container includes a gap portion that internally disposes at least a part of the device under test, and an enclosure portion that includes a first flat surface portion and a second flat surface portion, and disposes the gap portion between the first flat surface portion and the second flat surface portion, thereby enclosing the gap portion. Moreover, a relationship n1→0.1≦n2≦n1+0.1 holds where n2 is a refractive index of the enclosure portion, and n1 is a refractive index of the device under test. Further, the first flat surface portion intersects with a travel direction of the terahertz wave at the right angle.
    • 根据本发明的容器包含被太赫兹波测量装置测量的被测器件的至少一部分。 容器包括内部配置被测设备的至少一部分的间隙部分和包括第一平坦表面部分和第二平坦表面部分的封闭部分,并且将间隙部分设置在第一平坦表面部分和第二平坦部分之间 第二平坦表面部分,从而包围间隙部分。 此外,n1→0.1≦̸ n2≦̸ n1 + 0.1的关系成立,其中n2是外壳部分的折射率,n1是被测器件的折射率。 此外,第一平面部与直角的太赫兹波的行进方向交叉。