会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Allocation of storage resources in a networked computing environment based on energy utilization
    • 基于能源利用的网络计算环境中的存储资源分配
    • US08407501B2
    • 2013-03-26
    • US13073081
    • 2011-03-28
    • Sandip AgarwalaEric K. ButlerSandeep GopisettyKavita Chavda
    • Sandip AgarwalaEric K. ButlerSandeep GopisettyKavita Chavda
    • G06F1/26
    • H04L47/70G06F3/0625G06F3/0635G06F3/067Y02D10/154
    • Embodiments of the present invention provide an approach to provision storage resources (e.g., across an enterprise storage system (ESS) such as a general parallel file system (GPFS) or the like) for different workloads in an energy efficient manner. The system evaluates different energy profiles/workloads' energy consumption characteristics of storage devices to determine an allocation plan that reduces the energy cost (e.g., results in the lowest cost/energy consumption for handling a storage workload). In a typical embodiment, energy consumption characteristics for handling a particular storage workload will be determined. Thereafter, a type of storage device capable of handling the workload will be determined. Then, an allocation plan that results in the most efficient energy consumption for handling the workload will be developed. In general, the allocation plan is based upon the energy consumption characteristics and an energy efficiency algorithm. The energy efficiency algorithm serves to identify storage device(s) that can handle the workload in such a way as to reduce total energy consumption and, accordingly, costs. Along these lines, the energy efficiency algorithm may also consider other factors such as capacity and load of storage devices and service level agreement (SLA) terms in addition to energy costs (e.g., over times of day and/or days of week). In any event, at least one storage device can then be selected for handling the storage workload according to the allocation plan.
    • 本发明的实施例提供了一种以能量效率方式为不同工作负载提供存储资源(例如,跨企业存储系统(ESS),诸如通用并行文件系统(GPFS)等)的方法。 该系统评估存储设备的不同能量简档/工作负载的能量消耗特征,以确定降低能量成本的分配计划(例如,导致用于处理存储工作负载的最低成本/能量消耗)。 在典型的实施例中,将确定用于处理特定存储工作负载的能量消耗特性。 此后,可以确定能够处理工作量的一种存储装置。 然后,将开发出一种能够最有效地处理工作负载能耗的分配计划。 一般来说,分配方案是基于能量消耗特性和能量效率算法。 能源效率算法用于识别能够处理工作负载的存储设备,以减少总能量消耗,并因此降低成本。 除此之外,能源效率算法还可以考虑其他因素,例如存储设备的容量和负载以及服务水平协议(SLA)术语以及能量成本(例如,超过一天和/或几周的时间)。 在任何情况下,可以根据分配计划选择至少一个存储设备来处理存储工作负载。
    • 3. 发明申请
    • ALLOCATION OF STORAGE RESOURCES IN A NETWORKED COMPUTING ENVIRONMENT BASED ON ENERGY UTILIZATION
    • 基于能源利用的网络计算环境中的存储资源分配
    • US20120254640A1
    • 2012-10-04
    • US13073081
    • 2011-03-28
    • Sandip AgarwalaEric K. ButlerSandeep GopisettyKavita Chavda
    • Sandip AgarwalaEric K. ButlerSandeep GopisettyKavita Chavda
    • G06F12/02G06F1/32
    • H04L47/70G06F3/0625G06F3/0635G06F3/067Y02D10/154
    • Embodiments of the present invention provide an approach to provision storage resources (e.g., across an enterprise storage system (ESS) such as a general parallel file system (GPFS) or the like) for different workloads in an energy efficient manner. The system evaluates different energy profiles/workloads' energy consumption characteristics of storage devices to determine an allocation plan that reduces the energy cost (e.g., results in the lowest cost/energy consumption for handling a storage workload). In a typical embodiment, energy consumption characteristics for handling a particular storage workload will be determined. Thereafter, a type of storage device capable of handling the workload will be determined. Then, an allocation plan that results in the most efficient energy consumption for handling the workload will be developed. In general, the allocation plan is based upon the energy consumption characteristics and an energy efficiency algorithm. The energy efficiency algorithm serves to identify storage device(s) that can handle the workload in such a way as to reduce total energy consumption and, accordingly, costs. Along these lines, the energy efficiency algorithm may also consider other factors such as capacity and load of storage devices and service level agreement (SLA) terms in addition to energy costs (e.g., over times of day and/or days of week). In any event, at least one storage device can then be selected for handling the storage workload according to the allocation plan.
    • 本发明的实施例提供了一种以能量效率方式为不同工作负载提供存储资源(例如,跨企业存储系统(ESS),诸如通用并行文件系统(GPFS)等)的方法。 该系统评估存储设备的不同能量简档/工作负载的能量消耗特征,以确定降低能量成本的分配计划(例如,导致用于处理存储工作负载的最低成本/能量消耗)。 在典型的实施例中,将确定用于处理特定存储工作负载的能量消耗特性。 此后,可以确定能够处理工作量的一种存储装置。 然后,将开发出一种能够最有效地处理工作负载能耗的分配计划。 一般来说,分配方案是基于能量消耗特性和能量效率算法。 能源效率算法用于识别能够处理工作负载的存储设备,以减少总能量消耗,并因此降低成本。 除此之外,能源效率算法还可以考虑其他因素,例如存储设备的容量和负载以及服务水平协议(SLA)术语以及能量成本(例如,超过一天和/或几周的时间)。 在任何情况下,可以根据分配计划选择至少一个存储设备来处理存储工作负载。
    • 8. 发明申请
    • AUTOMATED STORAGE PROVISIONING WITHIN A CLUSTERED COMPUTING ENVIRONMENT
    • 在集群计算环境中自动存储提供
    • US20120110260A1
    • 2012-05-03
    • US12915153
    • 2010-10-29
    • Kavita ChavdaDavid P. GoodmanSandeep GopisettyLarry S. McGimseyJames E. OlsonAameek Singh
    • Kavita ChavdaDavid P. GoodmanSandeep GopisettyLarry S. McGimseyJames E. OlsonAameek Singh
    • G06F12/00
    • G06F3/0689G06F3/0605G06F3/0619G06F3/0665G06F3/067
    • Embodiments of the present invention provide an approach for automatic storage planning and provisioning within a clustered computing environment (e.g., a cloud computing environment). Specifically, embodiments of the present invention will receive planning input for a set of storage area network volume controllers (SVCs) within the clustered computing environment, the planning input indicating a potential load on the SVCs and its associated components. Along these lines, analytical models (e.g., from vendors) can be also used that allow for a load to be accurately estimated on the storage components. Regardless, configuration data for a set of storage components (i.e., the set of SVCs, a set of managed disk (Mdisk) groups associated with the set of SVCs, and a set of backend storage systems) will also be collected. Based on this configuration data, the set of storage components will be filtered to identify candidate storage components capable of addressing the potential load. Then, performance data for the candidate storage components will be analyzed to identify an SVC and an Mdisk group to address the potential load. This allows for storage provisioning planning to be automated in a highly accurate fashion.
    • 本发明的实施例提供了一种用于集群计算环境(例如,云计算环境)内的自动存储规划和供应的方法。 具体地,本发明的实施例将接收针对集群计算环境内的一组存储区域网络卷控制器(SVC)的规划输入,规划输入指示SVC及其相关组件上的潜在负载。 沿着这些线路,还可以使用分析模型(例如,来自供应商),允许在存储组件上准确地估计负载。 无论如何,还将收集一组存储组件(即,一组SVC,与该组SVC相关联的一组受管理磁盘(Mdisk)组)和一组后端存储系统的配置数据。 基于该配置数据,将对该组存储组件进行滤波以识别能够寻址潜在负载的候选存储组件。 然后,将分析候选存储组件的性能数据,以识别SVC和Mdisk组以解决潜在负载。 这使得存储配置计划能够以高度精确的方式自动化。