会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 6. 发明申请
    • OPTIMIZING STORAGE CLOUD ENVIRONMENTS THROUGH ADAPTIVE STATISTICAL MODELING
    • 通过自适应统计建模优化存储云环境
    • US20120116743A1
    • 2012-05-10
    • US12942011
    • 2010-11-08
    • Richard AyalaKavita ChavdaSandeep GopisettySeshashayee S. MurthyAameek SinghSandeep M. Uttamchandani
    • Richard AyalaKavita ChavdaSandeep GopisettySeshashayee S. MurthyAameek SinghSandeep M. Uttamchandani
    • G06G7/62
    • G06F17/30557
    • Embodiments of the present invention provide an approach for adapting an information extraction middleware for a clustered computing environment (e.g., a cloud environment) by creating and managing a set of statistical models generated from performance statistics of operating devices within the clustered computing environment. This approach takes into account the required accuracy in modeling, including computation cost of modeling, to pick the best modeling solution at a given point in time. When higher accuracy is desired (e.g., nearing workload saturation), the approach adapts to use an appropriate modeling algorithm. Adapting statistical models to the data characteristics ensures optimal accuracy with minimal computation time and resources for modeling. This approach provides intelligent selective refinement of models using accuracy-based and operating probability-based triggers to optimize the clustered computing environment, i.e., maximize accuracy and minimize computation time.
    • 本发明的实施例提供了一种用于通过创建和管理从群集计算环境内的操作设备的性能统计生成的一组统计模型来适配用于群集计算环境(例如,云环境)的信息提取中间件的方法。 这种方法考虑了所需的建模精度,包括建模的计算成本,以便在给定时间点选择最佳建模解决方案。 当需要更高的精度(例如,接近工作负载饱和)时,该方法适应于使用适当的建模算法。 将统计模型适应数据特征确保最佳精度,最小的计算时间和建模资源。 该方法提供使用基于精度和基于概率的触发器来优化群集计算环境(即,最大化精度和最小化计算时间)的模型的智能选择性细化。
    • 7. 发明申请
    • CALIBRATING CLOUD COMPUTING ENVIRONMENTS
    • 校准云计算环境
    • US20120042061A1
    • 2012-02-16
    • US12855780
    • 2010-08-13
    • Richard AyalaKavita ChavdaSandeep GopisettySeshashayee S. MurthyAameek Singh
    • Richard AyalaKavita ChavdaSandeep GopisettySeshashayee S. MurthyAameek Singh
    • G06F15/173G06F9/455
    • G06F9/45558G06F9/5072G06F11/3409G06F11/3433G06F11/3442G06F2009/4557G06F2209/501H04L41/14H04L41/145
    • In general, embodiments of present invention provide an approach for calibrating a cloud computing environment. Specifically, embodiments of the present invention provide an empirical approach for obtaining end-to-end performance characteristics for workloads in the cloud computing environment (hereinafter the “environment”). In a typical embodiment, different combinations of cloud server(s) and cloud storage unit(s) are determined. Then, a virtual machine is deployed to one or more of the servers within the cloud computing environment. The virtual machine is used to generate a desired workload on a set of servers within the environment. Thereafter, performance measurements for each of the different combinations under the desired workload will be taken. Among other things, the performance measurements indicate a connection quality between the set of servers and the set of storage units, and are used in calibrating the cloud computing environment to determine future workload placement. Along these lines, the performance measurements can be populated into a table or the like, and a dynamic map of a data center having the set of storage units can be generated.
    • 通常,本发明的实施例提供了一种用于校准云计算环境的方法。 具体地,本发明的实施例提供了一种用于获得云计算环境(以下称为“环境”)中的工作负载的端到端性能特征的经验性方法。 在典型的实施例中,确定云服务器和云存储单元的不同组合。 然后,将虚拟机部署到云计算环境中的一个或多个服务器。 虚拟机用于在环境中的一组服务器上生成所需的工作负载。 此后,将采取在所需工作负荷下的每个不同组合的性能测量。 其中,性能测量表明服务器组和存储单元组之间的连接质量,并用于校准云计算环境以确定未来的工作负载布局。 沿着这些行,性能测量可以被填充到表等中,并且可以生成具有该组存储单元的数据中心的动态映射。
    • 8. 发明授权
    • Calibrating cloud computing environments
    • 校准云计算环境
    • US09323561B2
    • 2016-04-26
    • US12855780
    • 2010-08-13
    • Richard AyalaKavita ChavdaSandeep GopisettySeshashayee S. MurthyAameek Singh
    • Richard AyalaKavita ChavdaSandeep GopisettySeshashayee S. MurthyAameek Singh
    • G06F9/455G06F9/50G06F11/34H04L12/24
    • G06F9/45558G06F9/5072G06F11/3409G06F11/3433G06F11/3442G06F2009/4557G06F2209/501H04L41/14H04L41/145
    • In general, embodiments of present invention provide an approach for calibrating a cloud computing environment. Specifically, embodiments of the present invention provide an empirical approach for obtaining end-to-end performance characteristics for workloads in the cloud computing environment (hereinafter the “environment”). In a typical embodiment, different combinations of cloud server(s) and cloud storage unit(s) are determined. Then, a virtual machine is deployed to one or more of the servers within the cloud computing environment. The virtual machine is used to generate a desired workload on a set of servers within the environment. Thereafter, performance measurements for each of the different combinations under the desired workload will be taken. Among other things, the performance measurements indicate a connection quality between the set of servers and the set of storage units, and are used in calibrating the cloud computing environment to determine future workload placement. Along these lines, the performance measurements can be populated into a table or the like, and a dynamic map of a data center having the set of storage units can be generated.
    • 通常,本发明的实施例提供了一种用于校准云计算环境的方法。 具体地,本发明的实施例提供了一种用于获得云计算环境(以下称为“环境”)中的工作负载的端到端性能特征的经验性方法。 在典型的实施例中,确定云服务器和云存储单元的不同组合。 然后,将虚拟机部署到云计算环境中的一个或多个服务器。 虚拟机用于在环境中的一组服务器上生成所需的工作负载。 此后,将采取在所需工作负荷下的每个不同组合的性能测量。 其中,性能测量表明服务器组和存储单元组之间的连接质量,并用于校准云计算环境以确定未来的工作负载布局。 沿着这些行,性能测量可以被填充到表等中,并且可以生成具有该组存储单元的数据中心的动态映射。
    • 9. 发明申请
    • AUTOMATED STORAGE PROVISIONING WITHIN A CLUSTERED COMPUTING ENVIRONMENT
    • 在集群计算环境中自动存储提供
    • US20120110260A1
    • 2012-05-03
    • US12915153
    • 2010-10-29
    • Kavita ChavdaDavid P. GoodmanSandeep GopisettyLarry S. McGimseyJames E. OlsonAameek Singh
    • Kavita ChavdaDavid P. GoodmanSandeep GopisettyLarry S. McGimseyJames E. OlsonAameek Singh
    • G06F12/00
    • G06F3/0689G06F3/0605G06F3/0619G06F3/0665G06F3/067
    • Embodiments of the present invention provide an approach for automatic storage planning and provisioning within a clustered computing environment (e.g., a cloud computing environment). Specifically, embodiments of the present invention will receive planning input for a set of storage area network volume controllers (SVCs) within the clustered computing environment, the planning input indicating a potential load on the SVCs and its associated components. Along these lines, analytical models (e.g., from vendors) can be also used that allow for a load to be accurately estimated on the storage components. Regardless, configuration data for a set of storage components (i.e., the set of SVCs, a set of managed disk (Mdisk) groups associated with the set of SVCs, and a set of backend storage systems) will also be collected. Based on this configuration data, the set of storage components will be filtered to identify candidate storage components capable of addressing the potential load. Then, performance data for the candidate storage components will be analyzed to identify an SVC and an Mdisk group to address the potential load. This allows for storage provisioning planning to be automated in a highly accurate fashion.
    • 本发明的实施例提供了一种用于集群计算环境(例如,云计算环境)内的自动存储规划和供应的方法。 具体地,本发明的实施例将接收针对集群计算环境内的一组存储区域网络卷控制器(SVC)的规划输入,规划输入指示SVC及其相关组件上的潜在负载。 沿着这些线路,还可以使用分析模型(例如,来自供应商),允许在存储组件上准确地估计负载。 无论如何,还将收集一组存储组件(即,一组SVC,与该组SVC相关联的一组受管理磁盘(Mdisk)组)和一组后端存储系统的配置数据。 基于该配置数据,将对该组存储组件进行滤波以识别能够寻址潜在负载的候选存储组件。 然后,将分析候选存储组件的性能数据,以识别SVC和Mdisk组以解决潜在负载。 这使得存储配置计划能够以高度精确的方式自动化。