会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明申请
    • SYSTEM AND METHOD FOR JOINT CLASSIFICATION USING FEATURE SPACE CLUSTER LABELS
    • 使用特征空间聚类标签进行联合分类的系统和方法
    • WO2009045461A1
    • 2009-04-09
    • PCT/US2008/011399
    • 2008-10-02
    • SIEMENS MEDICAL SOLUTIONS USA, INC.JEREBKO, Anna
    • JEREBKO, Anna
    • G06K9/62
    • G06K9/622G06K9/6262G06K2209/053
    • A method for training a classifier for use in a computer aided detection system includes providing (41) a training set of images acquired from a plurality of patients, each said image including one or more candidate regions that have been identified (42) as suspicious by a candidate generation step of a computer aided detection system, and wherein each said image has been manually annotated to identify lesions, using said training set to train (44) a classifier adapted for identifying a candidate region as a lesion or non-lesion, clustering (46) candidate regions having similar features for each patient individually, and modifying (47) said trained classifier decision boundary with an additional classification step incorporating said individual candidate region clustering
    • 一种用于训练用于计算机辅助检测系统的分类器的方法包括提供(41)从多个患者获取的图像的训练集合,每个所述图像包括已被识别(42)的一个或多个候选区域可疑由 计算机辅助检测系统的候选生成步骤,并且其中每个所述图像已被手动注释以识别病变,使用所述训练集来训练(44)适于将候选区域识别为病变或非病变的分类器,聚类 (46)个别地具有每个患者具有相似特征的候选区域,以及用包括所述单个候选区域聚类的附加分类步骤修改(47)所述经训练的分类器决策边界
    • 7. 发明申请
    • SYSTEM AND METHOD FOR LESION DETECTION USING LOCALLY ADJUSTABLE PRIORS
    • 使用本地可调优先级进行检测的系统和方法
    • WO2009045460A1
    • 2009-04-09
    • PCT/US2008/011398
    • 2008-10-02
    • SIEMENS MEDICAL SOLUTIONS USA, INC.JEREBKO, AnnaSALGANICOFF, Marcos
    • JEREBKO, AnnaSALGANICOFF, Marcos
    • G06K9/62
    • G06K9/6278G06K2209/05G06K2209/053G06T7/0012G06T7/11G06T7/143G06T2207/30028G06T2207/30061
    • According to an aspect of the invention, a method for training a classifier for classifying candidate regions in computer aided diagnosis of digital medical images includes providing (81) a training set of annotated images, each image including one or more candidate regions that have been identified as suspicious, deriving (82) a set of descriptive feature vectors, where each candidate region is associated with a feature vector. A subset of the features are conditionally dependent, and the remaining features are conditionally independent. The conditionally independent features are used to train (83) a naive Bayes classifier that classifies the candidate regions as lesion or non-lesion. A joint probability distribution that models the conditionally dependent features, and a prior-odds probability ratio of a candidate region being associated with a lesion are determined (84, 85) from the training images. A new classifier is formed (86) from the naive Bayes classifier, the joint probability distribution, and the prior-odds probability ratio.
    • 根据本发明的一个方面,一种用于训练分类器的方法,用于在数字医学图像的计算机辅助诊断中对候选区域进行分类,包括提供(81)注释图像的训练集,每个图像包括一个或多个已被识别的候选区域 作为可疑的,导出(82)一组描述性特征向量,其中每个候选区域与特征向量相关联。 特征的子集有条件依赖,其余的特征是有条件的独立的。 条件独立的特征用于训练(83)一个幼稚贝叶斯分类器,将候选区域分类为病变或非病变。 从训练图像中确定与条件相关特征建模的联合概率分布以及与病变相关联的候选区域的先前概率概率比(84,85)。 从朴素贝叶斯分类器,联合概率分布和先验概率概率比,形成一个新的分类器(86)。