会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • Reservoir management system and method
    • 水库管理制度与方法
    • US20020171560A1
    • 2002-11-21
    • US10156403
    • 2002-05-28
    • SCHLUMBERGER TECHNOLOGY CORPORATION
    • Reinhart CiglenecJacques R. Tabanou
    • G01V003/00
    • E21B7/061E21B23/00E21B23/14E21B29/06E21B33/13E21B47/01E21B47/024E21B47/044E21B47/09E21B47/12E21B47/122E21B47/124E21B49/00E21B49/10
    • A remote sensing unit for sensing subsurface formation is provided. The remote sensing unit is an active device with the capability of responding to control commands to determine subsurface formation characteristics, and transmitting corresponding data values. Some embodiments of the remote sensing unit include a battery, or a capacitor for storing charge. The embodiments that include the capacitor receive RF power that is converted to a DC signal for storing charge on the capacitor. When the charge is depleted to a specified point, the remote sensing unit prompts the wellbore tool to transmit additional RF power to recharge the capacitor. The remote sensing unit is provided with RF power to wake it up and to place it into an operational mode, and/or to send modulated data values that are then transmitted to the surface where operational decisions for the well may be made.
    • 提供了一种用于感测地下地层的遥感单元。 遥感单元是具有响应于控制命令来确定地下地层特征的能力的有源设备,并且传送相应的数据值。 遥感单元的一些实施例包括电池或用于存储电荷的电容器。 包括电容器的实施例接收被转换成用于在电容器上存储电荷的DC信号的RF功率。 当电荷耗尽到指定点时,遥感单元提示井筒工具传输额外的RF功率以对电容器进行再充电。 遥感单元被提供有RF功率以将其唤醒并将其置于操作模式中,和/或发送调制的数据值,然后将其传输到可以进行井的操作决策的表面。
    • 3. 发明申请
    • Reservoir management system and method
    • US20030058125A1
    • 2003-03-27
    • US10157586
    • 2002-05-28
    • SCHLUMBERGER TECHNOLOGY CORPORATION
    • Reinhart CiglenecJacques R. Tabanou
    • G01V003/00
    • E21B7/061E21B23/00E21B23/14E21B29/06E21B33/13E21B47/01E21B47/024E21B47/044E21B47/09E21B47/12E21B47/122E21B47/124E21B49/00E21B49/10
    • An apparatus and a method for controlling oilfield production to improve efficiency includes a remote sensing unit that is placed within a subsurface formation, an antenna structure for transmitting power and communicating signals to the remote sensing unit and for receiving communication signals from the remote sensor, a casing joint having nonconductive nullwindowsnull for allowing an internally located antenna to communicate with the remote sensing unit for those embodiments in which a wireline tool is being used to communicate with remote sensing unit, and a system for obtaining subsurface formation data and for producing the formation data to a central location for subsequent analysis. The remote sensing unit is a standalone sensor that is placed sufficiently far from the wellbore to reduce or eliminate effects that the wellbore might have on formation data samples taken by the remote sensing unit. The remote sensing unit is an active device with the capability of responding to control commands to determine certain subsurface formation characteristics such as pressure or temperature, and transmitting corresponding data values to a wellbore tool. Some embodiments of the remote sensing unit include a battery within its power supply. Other embodiments include a capacitor for storing charge. The embodiments that include the capacitor receive RF power that is converted to a DC signal for storing charge on the capacitor. The charged capacitor then acts as a power source to provide power to the internal circuitry of the remote sensing unit. When the charge is depleted to a specified point, the remote sensing unit stops transmitting to prompt the wellbore tool to transmit additional RF power to recharge the capacitor. This particular embodiment allows the remote sensing unit to be operable well after any charge of a battery would have been depleted rendering the remote sensing unit inoperable. An inventive method therefore includes providing RF power to the remote sensing unit to wake it up and to place it into an operational mode. The method further includes receiving modulated data values from the remote sensing unit that are then transmitted to the surface where operational decisions for the well may be made. In one embodiment of the invention, the subsurface formation data values are transmitted to a central location for analysis.
    • 4. 发明申请
    • Reservoir monitoring through windowed casing joint
    • 通过窗口套管接头进行水库监测
    • US20020149498A1
    • 2002-10-17
    • US10115617
    • 2002-04-03
    • SCHLUMBERGER TECHNOLOGY CORPORATION
    • Jacques TabanouReinhart CiglenecClive EckersleyChristian Chouzenoux
    • G01V003/00
    • E21B7/061E21B23/00E21B23/14E21B33/13E21B47/01E21B47/024E21B47/044E21B47/09E21B47/12E21B47/122E21B47/124E21B49/00E21B49/10
    • An apparatus and a method for controlling oilfield production to improve efficiency includes a remote sensing unit that is placed within a subsurface formation, an antenna structure for communicating with the remote sensing unit, a casing joint having nonconductive nullwindowsnull for allowing a internally located antenna to communicate with the remote sensing unit, and a system for obtaining subsurface formation data and for producing the formation data to a central location for subsequent analysis. The remote sensing unit is placed sufficiently far from the wellbore to reduce or eliminate effects that the wellbore might have on formation data samples taken by the remote sensing unit. The remote sensing unit is an active device with the capability of responding to control commands by determining certain subsurface formation characteristics such as pressure or temperature, and transmitting corresponding data values to a wellbore tool. Some embodiments of the remote sensing unit include a battery within its power supply. Other embodiments include a capacitor for storing charge. In order for a communication link to be established with the remote sensing unit through a wireline tool in a cased well, a casing joint includes at least one electromagnetic window that is formed of a non-conductive material that will allow electromagnetic signals to pass through it. In the preferred embodiment, the electromagnetic windows are formed to substantially circumscribe the casing joint to render it largely rotationally invariant. The electromagnetic windows are formed of any rigid and durable non-conductive material including, by way of example, either ceramics or fiberglass.
    • 用于控制油田生产以提高效率的装置和方法包括放置在地下地层内的遥感单元,用于与遥感单元通信的天线结构,具有非导电“窗口”的壳体接头,用于允许内部定位的天线 与遥感单元进行通信,以及用于获得地下地层数据并将地层数据产生到中心位置的系统用于后续分析。 遥感单元放置得足够远离井眼,以减少或消除井眼对由遥感单元拍摄的地层数据样本可能产生的影响。 遥感单元是通过确定诸如压力或温度的某些地下地层特征以及将相应的数据值传送到井眼工具来响应控制命令的能力的有源装置。 遥感单元的一些实施例包括其电源内的电池。 其他实施例包括用于存储电荷的电容器。 为了通过套管井中的有线工具与遥感单元建立通信链路,壳体接头包括至少一个由允许电磁信号通过它的非导电材料形成的电磁窗口 。 在优选实施例中,电磁窗口形成为基本上限制套管接头,使其大体上不旋转地变化。 电磁窗由任何刚性和耐用的非导电材料形成,包括例如陶瓷或玻璃纤维。