会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 9. 发明申请
    • PLASMA EXTRACTION MICROCAVITY PLASMA DEVIVE AND METHOD
    • 等离子体萃取微波等离子体蒸馏和方法
    • WO2007091993A3
    • 2009-05-28
    • PCT/US2006003289
    • 2006-01-31
    • UNIV ILLINOISEDEN J GARYPARK SUNG-JIN
    • EDEN J GARYPARK SUNG-JIN
    • H01J61/04
    • G01N21/73G01N21/6404H05H1/2406H05H2001/2412
    • A preferred embodiment plasma extraction microcavity plasma device generates a spatially-confined plasma in a gas or vapor, or gas and vapor mixture, including, for example, atmospheric pressure air. A microcavity plasma device is excited by a potential applied between excitation electrodes (16, 18, 42) of the microcavity plasma device, and a probe electrode (20) proximate the microcavity is maintained at the potential of one of the electrodes, extracts plasma from the microcavity plasma device. In preferred embodiments, the excitation electrodes of the microcavity plasma device are isolated from the plasma by dielectric (22, 24, 26), and time-varying (AC, RF, bipolar or pulsed DC, etc.) potential excites a plasma that is then extracted by the probe electrode. In alternate embodiments, the microcavity plasma device has an excitation electrode that contacts the plasma. A DC potential excites a plasma that is then extracted by the probe electrode.
    • 优选的实施方案等离子体提取微腔等离子体装置在气体或蒸汽或气体和蒸汽混合物中产生空间有限的等离子体,包括例如大气压的空气。 微腔等离子体装置被施加在微腔等离子体装置的激发电极(16,18,42)之间的电位激发,并且靠近微腔的探针电极(20)保持在一个电极的电位,从 微腔等离子体装置。 在优选实施例中,微腔等离子体装置的激发电极通过电介质(22,24,26)与等离子体隔离,时变(AC,RF,双极或脉冲DC等)电位激发等离子体 然后由探针电极提取。 在替代实施例中,微腔等离子体装置具有接触等离子体的激发电极。 DC电位激发等离子体,然后由探针电极提取。
    • 10. 发明申请
    • AC-EXCITED MICROCAVITY DISCHARGE DEVICE AND METHOD
    • 交流微型放电装置及方法
    • WO2007086857A3
    • 2008-08-14
    • PCT/US2006002932
    • 2006-01-24
    • UNIV ILLINOISEDEN J GARYCHEN KUO-FENGOSTROM NELS PPARK SUNG-JIN
    • EDEN J GARYCHEN KUO-FENGOSTROM NELS PPARK SUNG-JIN
    • H01J1/62
    • H01J61/09H01J1/025H01J9/02H01J17/066H01J37/32018H01J37/32596H01J65/046
    • A method for fabricating microcavity discharge devices and arrays of devices. The devices are fabricated by layering a dielectric (1020, 220) on a first conducting layer or substrate (210, 1010). A second conducting layer or structure is overlaid on the dielectric layer. In some devices, a microcavity (1040, 212) is created that penetrates the second conducting layer or structure and the dielectric layer. In other devices, the microcavity penetrates to the first conducting layer. The second conducting layer or structure together with the inside face of the microcavity is overlaid with a second dielectric layer. The microcavities are then filled with a discharge gas. When a time- varying potential of the appropriate magnitude is applied between the conductors, a microplasma discharge is generated in the microcavity. These devices can exhibit extended lifetimes since the conductors are encapsulated, shielding the conductors from degradation due to exposure to the plasma. Some of the devices are flexible and the dielectric can be chosen to act as a mirror.
    • 一种制造微腔放电装置和器件阵列的方法。 通过在第一导电层或衬底(210,1010)上层叠电介质(1020,220)来制造器件。 第二导电层或结构覆盖在电介质层上。 在一些装置中,产生穿过第二导电层或结构和电介质层的微腔(1040,212)。 在其他装置中,微腔穿透到第一导电层。 第二导电层或结构与微腔的内表面一起覆盖有第二介电层。 然后用放电气体填充微腔。 当在导体之间施加适当大小的时变电位时,在微腔中产生微量放电。 由于导体被封装,因此这些器件可以延长使用寿命,从而屏蔽导体不受暴露于等离子体的退化。 一些装置是柔性的,并且电介质可以选择用作反射镜。