会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • AC-EXCITED MICROCAVITY DISCHARGE DEVICE AND METHOD
    • 交流微型放电装置及方法
    • WO2007086857A3
    • 2008-08-14
    • PCT/US2006002932
    • 2006-01-24
    • UNIV ILLINOISEDEN J GARYCHEN KUO-FENGOSTROM NELS PPARK SUNG-JIN
    • EDEN J GARYCHEN KUO-FENGOSTROM NELS PPARK SUNG-JIN
    • H01J1/62
    • H01J61/09H01J1/025H01J9/02H01J17/066H01J37/32018H01J37/32596H01J65/046
    • A method for fabricating microcavity discharge devices and arrays of devices. The devices are fabricated by layering a dielectric (1020, 220) on a first conducting layer or substrate (210, 1010). A second conducting layer or structure is overlaid on the dielectric layer. In some devices, a microcavity (1040, 212) is created that penetrates the second conducting layer or structure and the dielectric layer. In other devices, the microcavity penetrates to the first conducting layer. The second conducting layer or structure together with the inside face of the microcavity is overlaid with a second dielectric layer. The microcavities are then filled with a discharge gas. When a time- varying potential of the appropriate magnitude is applied between the conductors, a microplasma discharge is generated in the microcavity. These devices can exhibit extended lifetimes since the conductors are encapsulated, shielding the conductors from degradation due to exposure to the plasma. Some of the devices are flexible and the dielectric can be chosen to act as a mirror.
    • 一种制造微腔放电装置和器件阵列的方法。 通过在第一导电层或衬底(210,1010)上层叠电介质(1020,220)来制造器件。 第二导电层或结构覆盖在电介质层上。 在一些装置中,产生穿过第二导电层或结构和电介质层的微腔(1040,212)。 在其他装置中,微腔穿透到第一导电层。 第二导电层或结构与微腔的内表面一起覆盖有第二介电层。 然后用放电气体填充微腔。 当在导体之间施加适当大小的时变电位时,在微腔中产生微量放电。 由于导体被封装,因此这些器件可以延长使用寿命,从而屏蔽导体不受暴露于等离子体的退化。 一些装置是柔性的,并且电介质可以选择用作反射镜。
    • 2. 发明申请
    • AC-EXCITED MICROCAVITY DISCHARGE DEVICE AND METHOD
    • 交流微型放电装置及方法
    • WO2007086857A2
    • 2007-08-02
    • PCT/US2006/002932
    • 2006-01-24
    • THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISEDEN, J. GaryCHEN, Kuo-FengOSTROM, Nels, P.PARK, Sung-Jin
    • EDEN, J. GaryCHEN, Kuo-FengOSTROM, Nels, P.PARK, Sung-Jin
    • H01J61/04
    • H01J61/09H01J1/025H01J9/02H01J17/066H01J37/32018H01J37/32596H01J65/046
    • A method for fabricating microcavity discharge devices and arrays of devices. The devices are fabricated by layering a dielectric (1020, 220) on a first conducting layer or substrate (210, 1010). A second conducting layer or structure is overlaid on the dielectric layer. In some devices, a microcavity (1040, 212) is created that penetrates the second conducting layer or structure and the dielectric layer. In other devices, the microcavity penetrates to the first conducting layer. The second conducting layer or structure together with the inside face of the microcavity is overlaid with a second dielectric layer. The microcavities are then filled with a discharge gas. When a time- varying potential of the appropriate magnitude is applied between the conductors, a microplasma discharge is generated in the microcavity. These devices can exhibit extended lifetimes since the conductors are encapsulated, shielding the conductors from degradation due to exposure to the plasma. Some of the devices are flexible and the dielectric can be chosen to act as a mirror.
    • 一种制造微腔放电装置和器件阵列的方法。 通过在第一导电层或衬底(210,1010)上层叠电介质(1020,220)来制造器件。 第二导电层或结构覆盖在电介质层上。 在一些装置中,产生穿过第二导电层或结构和电介质层的微腔(1040,212)。 在其他装置中,微腔穿透到第一导电层。 第二导电层或结构与微腔的内表面一起覆盖有第二介电层。 然后用放电气体填充微腔。 当在导体之间施加适当大小的时变电位时,在微腔中产生微量放电。 由于导体被封装,因此这些器件可以延长使用寿命,从而屏蔽导体不受暴露于等离子体的退化。 一些装置是柔性的,并且电介质可以选择用作反射镜。
    • 3. 发明申请
    • ELECTRON INJECTION-CONTROLLED MICROCAVITY PLASMA DEVICE AND ARRAYS
    • 电子注入控制微波等离子体装置和阵列
    • WO2009055786A1
    • 2009-04-30
    • PCT/US2008/081318
    • 2008-10-27
    • THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISEDEN, J., GaryCHEN, Kuo-Feng
    • EDEN, J., GaryCHEN, Kuo-Feng
    • H01J17/49
    • H01J11/18H01J61/82
    • An embodiment of the invention is a microcavity plasma device that can be controlled by a low voltage electron emitter. The microcavity plasma device includes driving electrodes disposed proximate to a microcavity and arranged to contribute to generation of plasma in the microcavity upon application of a driving voltage. An electron emitter is arranged to emit electrons into the microcavity upon application of a control voltage. The electron emitter is an electron source having an insulator layer defining a tunneling region. The microplasma itself can serve as a second electrode necessary to energize the electron emitter. While a voltage comparable to previous microcavity plasma devices is still imposed across the microcavity plasma devices, control of the devices can be accomplished at high speeds and with a small voltage, e.g., about 5V to 30V in preferred embodiments.
    • 本发明的一个实施例是可以由低电压电子发射器控制的微腔等离子体装置。 微腔等离子体装置包括靠近微腔设置的驱动电极,并布置成有助于在施加驱动电压时在微腔中产生等离子体。 电子发射器布置成在施加控制电压时将电子发射到微腔中。 电子发射体是具有限定隧道区域的绝缘体层的电子源。 微质体本身可以用作为电子发射体通电所必需的第二电极。 虽然与先前的微腔等离子体器件相当的电压仍然施加在微腔等离子体器件之间,但是在优选实施例中,器件的控制可以在高速和小电压下实现,例如约5V至30V。