会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • SYSTEM AND METHOD FOR PREDICTING CONTEXT-DEPENDENT TERM IMPORTANCE OF SEARCH QUERIES
    • 用于预测搜索查询的背景相关重要性的系统和方法
    • US20110131157A1
    • 2011-06-02
    • US12626892
    • 2009-11-28
    • Rukmini IyerEren ManavogluHema Raghavan
    • Rukmini IyerEren ManavogluHema Raghavan
    • G06F17/30G06F15/18
    • G06Q30/0251
    • An improved system and method for identifying context-dependent term importance of queries is provided. A query term importance model is learned using supervised learning of context-dependent term importance for queries and is then applied for advertisement prediction using term importance weights of query terms as query features. For instance, a query term importance model for query rewriting may predict rewritten queries that match a query with term importance weights assigned as query features. Or a query term importance model for advertisement prediction may predict relevant advertisements for a query with term importance weights assigned as query features. In an embodiment, a sponsored advertisement selection engine selects sponsored advertisements scored by a query term importance engine that applies a query term importance model using term importance weights as query features and inverse document frequency weights as advertisement features to assign a relevance score.
    • 提供了一种用于识别查询的上下文相关项重要性的改进的系统和方法。 使用对查询的上下文相关项重要性的监督学习来学习查询词重要性模型,然后将其用作查询词语的重要度权重作为查询特征应用于广告预测。 例如,用于查询重写的查询项重要性模型可以预测与查询匹配的重写查询与被分配为查询特征的术语重要性权重。 或者用于广告预测的查询词重要性模型可以预测具有被指定为查询特征的术语重要性权重的查询的相关广告。 在一个实施例中,赞助的广告选择引擎选择由查询词语重要性引擎评分的赞助广告,该查询词语重要性引擎使用术语重要性权重作为查询特征和逆文档频率权重作为广告特征来分配相关性得分。
    • 2. 发明申请
    • SYSTEM AND METHOD TO IDENTIFY CONTEXT-DEPENDENT TERM IMPORTANCE OF QUERIES FOR PREDICTING RELEVANT SEARCH ADVERTISEMENTS
    • 识别相关相关重要因素的系统和方法用于预测相关搜索广告
    • US20110131205A1
    • 2011-06-02
    • US12626894
    • 2009-11-28
    • Rukmini IyerEren ManavogluHema Raghavan
    • Rukmini IyerEren ManavogluHema Raghavan
    • G06F17/30
    • G06F16/3334
    • An improved system and method for identifying context-dependent term importance of queries is provided. A query term importance model is learned using supervised learning of context-dependent term importance for queries and is then applied for advertisement prediction using term importance weights of query terms as query features. For instance, a query term importance model for query rewriting may predict rewritten queries that match a query with term importance weights assigned as query features. Or a query term importance model for advertisement prediction may predict relevant advertisements for a query with term importance weights assigned as query features. In an embodiment, a sponsored advertisement selection engine selects sponsored advertisements scored by a query term importance engine that applies a query term importance model using term importance weights as query features and inverse document frequency weights as advertisement features to assign a relevance score.
    • 提供了一种用于识别查询的上下文相关项重要性的改进的系统和方法。 使用对查询的上下文相关项重要性的监督学习来学习查询词重要性模型,然后将其用作查询词语的重要度权重作为查询特征应用于广告预测。 例如,用于查询重写的查询项重要性模型可以预测与查询匹配的重写查询与被分配为查询特征的术语重要性权重。 或者用于广告预测的查询词重要性模型可以预测具有被指定为查询特征的术语重要性权重的查询的相关广告。 在一个实施例中,赞助的广告选择引擎选择由查询词语重要性引擎评分的赞助广告,该查询词语重要性引擎使用术语重要性权重作为查询特征和逆文档频率权重作为广告特征来分配相关性得分。
    • 3. 发明申请
    • Ad Relevance In Sponsored Search
    • 广告相关性在赞助搜索
    • US20110270672A1
    • 2011-11-03
    • US12769446
    • 2010-04-28
    • Dustin HillardHema RaghavanEren ManavogluChris LeggetterStefan Schroedl
    • Dustin HillardHema RaghavanEren ManavogluChris LeggetterStefan Schroedl
    • G06Q30/00G06F15/18
    • G06Q30/02G06Q30/0243G06Q30/0246
    • Techniques for improving advertisement relevance for sponsored search advertising. The method includes steps for processing a click history data structure containing at least a plurality of query-advertisement pairs, populating a first translation table containing a co-occurrence count field, populating a second translation table containing an expected clicks field, and calculating a click propensity score for an advertisement using the click history data structure, the first translation table (for determining overall click likelihood across all historical traffic), and using the second translation table (for removing biases present in the first translation table). Other method steps calculate a second click propensity score for a second advertisement, then ranking the first advertisement relative to the second advertisement for comparing a click propensity score to a threshold for filtering low quality ad candidates from a plurality of ad candidates, and then ranking advertisements for optimizing placement of ads on a sponsored search display page.
    • 用于提高赞助搜索广告广告相关性的技术。 该方法包括处理包含至少多个查询 - 广告对的点击历史数据结构的步骤,填充包含同现计数字段的第一翻译表,填充包含预期点击字段的第二翻译表,以及计算点击 用于使用点击历史数据结构的广告的倾向得分,第一翻译表(用于确定所有历史流量中的整体点击可能性)以及使用第二转换表(用于去除存在于第一翻译表中的偏差)。 其他方法步骤计算第二广告的第二点击倾向得分,然后相对于第二广告对第一广告进行排名,用于将点击倾向得分与用于从多个广告候选中过滤低质量广告候选的阈值进行比较,然后排列广告 用于优化广告在赞助的搜索显示页面上的展示位置。