会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Method for balancing background conductivity for ion chromatography
    • 用于离子色谱法平衡背景电导率的方法
    • US4751189A
    • 1988-06-14
    • US838512
    • 1986-03-11
    • Roy D. Rocklin
    • Roy D. Rocklin
    • G01N30/60G01N30/96B01D15/08G01N30/02
    • G01N30/96G01N2030/965Y10T436/255
    • A method of ion chromatography in which the sample passes through a chromatographic column, a suppressor, and a conductivity detector, using a gradient electrolyte eluent. A non-ionic polyhydroxy compound is added with the eluent to the chromatographic column at a concentration inversely related to the concentration of the electrolyte which increases with time. The effluent is passed through a membrane suppressor for the conductivity of the electrolyte. The regenerant stream in the suppressor includes a complexing agent (boric acid) which passes through the membrane into the effluent to form highly ionized complex which counterbalances the increased background conductivity of the electrolyte to stabilize the background conductivity in the conductor.
    • 使用梯度电解质洗脱液,其中样品通过色谱柱,抑制剂和电导率检测器的离子色谱法。 将非离子多羟基化合物与洗脱液一起加入到色谱柱中,浓度与电解质浓度呈负相关,随浓度增加。 流出物通过膜抑制器以获得电解质的导电性。 抑制剂中的再生剂流包括络合剂(硼酸),其通过膜进入流出物以形成高度电离的络合物,其平衡电解质的增加的背景导电性以稳定导体中的背景导电性。
    • 5. 发明授权
    • Devices and methods for separating constituents
    • 用于分离成分的装置和方法
    • US07111501B2
    • 2006-09-26
    • US10678332
    • 2003-10-03
    • Roy D. RocklinKevin P. KilleenHongfeng Yin
    • Roy D. RocklinKevin P. KilleenHongfeng Yin
    • G01N30/00
    • G01N30/34G01N30/6095G01N2030/324G01N2030/347G01N2030/645
    • The subject invention includes constituent separation apparatuses that include a fluid pathway and a pair of spaced-apart electrodes positioned within the pathway for detecting current flow within a mobile phase present in the pathway. Coupled to the pair of spaced-apart electrodes is a mix ratio determinator for determining the mix ratio of the mobile phase from the detected current flow. Also provided are methods that include contacting a mobile phase with an apparatus for separating constituents of a mobile phase, detecting the current flow of the mobile phase when the mobile phase is in contact with the apparatus and determining the mix ratio of the mobile phase from the detected current flow. The mix ratio may be adjusted based on the determined mix ratio. Algorithms for practicing the subject methods are also provided on computer readable mediums. Systems and kits for practicing the subject methods are also provided.
    • 本发明包括构成分离装置,其包括流体通道和位于通路内的一对间隔开的电极,用于检测存在于通路中的流动相中的电流。 耦合到一对间隔开的电极是用于确定流动相与检测到的电流的混合比的混合比率确定器。 还提供了包括使流动相与用于分离流动相的组分的装置接触的方法,当流动相与装置接触时检测流动相的当前流量,并确定流动相与装置的混合比 检测电流。 可以基于所确定的混合比来调节混合比。 用于实践主题方法的算法也提供在计算机可读介质上。 还提供了用于实践主题方法的系统和套件。
    • 6. 发明授权
    • Methods and apparatus for real-time monitoring, measurement and control
of electroosmotic flow
    • 电渗流实时监测,测量和控制的方法和装置
    • US5441613A
    • 1995-08-15
    • US161942
    • 1993-12-03
    • Randy M. McCormickRoy D. Rocklin
    • Randy M. McCormickRoy D. Rocklin
    • G01N27/447G01N27/26
    • G01N27/44752
    • In capillary electrophoresis systems, real-time monitoring and measurement of the electroosmotic flow through a separation capillary is accomplished by coupling the outlet of the separation capillary to an electrically-conductive junction. In one embodiment, this junction is an ion-impermeable or an ion-exchange membrane unit that preferentially exchanges ions having a charge opposite to analyte ions of interest. Within a downstream region of the junction, all axial incremental voltage from the electroosmotic voltage source is terminated, which ensures that downstream electrolyte ion movement is passive, due to active flow created upstream when an incremental axial voltage existed. Upstream electrolyte ion flux is proportional to C.sub.1 .multidot.(.mu..sub.e +.mu..sub.eo), where C.sub.1 is the upstream concentration of the electrolyte ion of interest, .mu..sub.e is the electrolyte electrophoretic mobility, and .mu..sub.eo is the electroosmotic mobility. Downstream, the flux is proportional to C.sub.2 .multidot..mu..sub.eo, where C.sub.2 is the downstream concentration of the electrolyte ion of interest. The fluxes are equal, whereupon .mu..sub.eo .apprxeq.C.sub.1 .multidot..mu..sub.e /(C.sub.2 -C.sub.1). Since .mu..sub.e is known, .mu..sub.eo can be determined in real-time by measuring C.sub.2 and C.sub.1. In a second embodiment, the electrically-conductive junction preferably is a grounding capillary that converts plug-like electroosmotic flow to parabolic flow. A parabolic flow characteristic such as streaming potential, streaming current, or pressure differential is measured in real-time to ascertain electroosmotic flow rate. In each embodiment, the realtime measured flow information is feedback-coupled to preferably alter zeta-potential to regulate electrolyte solution flow in the separation capillary.
    • 在毛细管电泳系统中,通过分离毛细管的电渗流量的实时监测和测量是通过将分离毛细管的出口连接到导电结而实现的。 在一个实施方案中,该结是离子不可渗透或离子交换膜单元,其优先交换具有与感兴趣的分析物离子相反的电荷的离子。 在接头的下游区域内,来自电渗电压源的所有轴向增量电压被终止,这确保了下游电解质离子运动是被动的,这是由于当存在增量轴向电压时在上游产生的主动流。 上游电解质离子通量与C1x(μe +μeo)成比例,其中C1是感兴趣的电解质离子的上游浓度,μe是电解质电泳迁移率,μeo是电渗流动性。 在下游,通量与C2x muoo成比例,其中C2是感兴趣的电解质离子的下游浓度。 通量相等,于是大约C1×μe /(C2-C1)。 由于已知mu e可以通过测量C2和C1来实时确定。 在第二实施例中,导电结优选地是将插塞状电渗流转换成抛物线的接地毛细管。 实时测量流动电位,流动电流或压差等抛物线流动特征,以确定电渗流速。 在每个实施例中,实时测量的流量信息被反馈耦合以优选地改变ζ电位以调节分离毛细管中的电解质溶液流。