会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Maximum likelihood method for finding an adapted speaker model in eigenvoice space
    • 在本征语音空间中找到适应的说话者模型的最大似然法
    • US06263309B1
    • 2001-07-17
    • US09070054
    • 1998-04-30
    • Patrick NguyenRoland KuhnJean-Claude Junqua
    • Patrick NguyenRoland KuhnJean-Claude Junqua
    • G10L1508
    • G10L15/07
    • A set of speaker dependent models is trained upon a comparatively large number of training speakers, one model per speaker, and model parameters are extracted in a predefined order to construct a set of supervectors, one per speaker. Principle component analysis is then performed on the set of supervectors to generate a set of eigenvectors that define an eigenvoice space. If desired, the number of vectors may be reduced to achieve data compression. Thereafter, a new speaker provides adaptation data from which a supervector is constructed by constraining this supervector to be in the eigenvoice space based on a maximum likelihood estimation. The resulting coefficients in the eigenspace of this new speaker may then be used to construct a new set of model parameters from which an adapted model is constructed for that speaker. Environmental adaptation may be performed by including environmental variations in the training data.
    • 一组扬声器依赖模型训练在相对较多数量的训练扬声器上,每个扬声器一个模型和模型参数以预定义的顺序提取,以构建一组超级矢量,每个扬声器一个。 然后在一组超级矢量上执行原理分量分析,以生成一组定义本征语音空间的特征向量。 如果需要,可以减少向量的数量以实现数据压缩。 此后,新的说话者提供了通过基于最大似然估计将该超向量限制在本征语音空间中来构建超向量的适配数据。 然后,可以使用这个新的说话者的本征空间中得到的系数来构建一组新的模型参数,从该模型参数构建适合于该说话者的适应模型。 可以通过在训练数据中包括环境变化来执行环境适应。
    • 4. 发明授权
    • Dimensionality reduction for speaker normalization and speaker and environment adaptation using eigenvoice techniques
    • 使用本征语音技术的扬声器归一化和扬声器和环境适应的尺寸减小
    • US06343267B1
    • 2002-01-29
    • US09148753
    • 1998-09-04
    • Roland KuhnPatrick NguyenJean-Claude Junqua
    • Roland KuhnPatrick NguyenJean-Claude Junqua
    • G10L1908
    • G06K9/6247G10L15/07
    • A set of speaker dependent models or adapted models is trained upon a comparatively large number of training speakers, one model per speaker, and model parameters are extracted in a predefined order to construct a set of supervectors, one per speaker. Dimensionality reduction is then performed on the set of supervectors to generate a set of eigenvectors that define an eigenvoice space. If desired, the number of vectors may be reduced to achieve data compression. Thereafter, a new speaker provides adaptation data from which a supervector is constructed by constraining this supervector to be in the eigenvoice space based on a maximum likelihood estimation. The resulting coefficients in the eigenspace of this new speaker may then be used to construct a new set of model parameters from which an adapted model is constructed for that speaker. The adapted model may then be further adapted via MAP, MLLR, MLED or the like. The eigenvoice technique may be applied to MLLR transformation matrices or the like; Bayesian estimation performed in eigenspace uses prior knowledge about speaker space density to refine the estimate about the location of a new speaker in eigenspace.
    • 一组扬声器依赖模型或适应模型被训练在相对较多数量的训练扬声器上,每个扬声器一个模型和模型参数以预定义的顺序被提取以构造一组超级矢量,每个扬声器一个。 然后对该一组超级矢量执行尺寸减小,以生成一组定义本征语音空间的特征向量。 如果需要,可以减少向量的数量以实现数据压缩。 此后,新的说话者提供了通过基于最大似然估计将该超向量限制在本征语音空间中来构建超向量的适配数据。 然后,可以使用这个新的说话者的本征空间中得到的系数来构建一组新的模型参数,从该模型参数构建适合于该说话者的适应模型。 然后可以通过MAP,MLLR,MLED等进一步适配适配模型。 本征语音技术可以应用于MLLR变换矩阵等; 在本体空间中执行的贝叶斯估计使用关于扬声器空间密度的先前知识来改进关于本征空间中新的说话者位置的估计。
    • 5. 发明授权
    • Voice personalization of speech synthesizer
    • 语音合成器的语音个性化
    • US06970820B2
    • 2005-11-29
    • US09792928
    • 2001-02-26
    • Jean-Claude JunquaFlorent PerronninRoland KuhnPatrick Nguyen
    • Jean-Claude JunquaFlorent PerronninRoland KuhnPatrick Nguyen
    • G10L13/08G10L13/02G10L13/04G10L13/06G10L21/00G10L13/00
    • G10L13/04G10L2021/0135
    • The speech synthesizer is personalized to sound like or mimic the speech characteristics of an individual speaker. The individual speaker provides a quantity of enrollment data, which can be extracted from a short quantity of speech, and the system modifies the base synthesis parameters to more closely resemble those of the new speaker. More specifically, the synthesis parameters may be decomposed into speaker dependent parameters, such as context-independent parameters, and speaker independent parameters, such as context dependent parameters. The speaker dependent parameters are adapted using enrollment data from the new speaker. After adaptation, the speaker dependent parameters are combined with the speaker independent parameters to provide a set of personalized synthesis parameters. To adapt the parameters with a small amount of enrollment data, an eigenspace is constructed and used to constrain the position of the new speaker so that context independent parameters not provided by the new speaker may be estimated.
    • 语音合成器被个性化以发音或模仿单个扬声器的语音特征。 单个扬声器提供一定数量的登记数据,其可以从短语言中提取,并且系统将基本合成参数修改为更接近于新说话者的参考数据。 更具体地,合成参数可以被分解为与扬声器相关的参数,诸如与上下文无关的参数,以及与扬声器无关的参数,诸如与上下文相关的参数。 使用来自新扬声器的注册数据来调整与扬声器相关的参数。 在适应之后,将扬声器依赖参数与扬声器独立参数组合以提供一组个性化合成参数。 为了使参数具有少量的注册数据,构造本征空间并用于约束新的说话者的位置,以便可以估计不能由新发言者提供的上下文独立参数。
    • 7. 发明授权
    • Adaptation system and method for E-commerce and V-commerce applications
    • 电子商务和电子商务应用的适应系统和方法
    • US06341264B1
    • 2002-01-22
    • US09258113
    • 1999-02-25
    • Roland KuhnJean-Claude Junqua
    • Roland KuhnJean-Claude Junqua
    • G10L1528
    • G06Q30/06G06Q30/0609G06Q50/188G10L15/07G10L15/26G10L17/00
    • Electronic commerce (E-commerce) and Voice commerce (V-commerce) proceeds by having the user speak into the system. The user's speech is converted by speech recognizer into a form required by the transaction processor that effects the electronic commerce operation. A dimensionality reduction processor converts the user's input speech into a reduced dimensionality set of values termed eigenvoice parameters. These parameters are compared with a set of previously stored eigenvoice parameters representing a speaker population (the eigenspace representing speaker space) and the comparison is used by the speech model adaptation system to rapidly adapt the speech recognizer to the user's speech characteristics. The user's eigenvoice parameters are also stored for subsequent use by the speaker verification and speaker identification modules.
    • 电子商务(电子商务)和语音商务(V-commerce)通过让用户进入系统进行。 用户的语音由语音识别器转换成影响电子商务操作的交易处理器所需的形式。 维数降低处理器将用户的输入语音转换成称为本征语音参数的减小的维度值集合。 将这些参数与表示扬声器群体(表示扬声器空间的本征空间)的一组先前存储的本征语音参数进行比较,并且语音模型适配系统使用该比较来快速地将语音识别器适应于用户的语音特征。 用户的本征语音参数也被存储供讲话人验证和说话者识别模块随后使用。
    • 8. 发明授权
    • Method for goal-oriented speech translation in hand-held devices using meaning extraction and dialogue
    • 使用意义提取和对话的手持设备中面向目标的语音翻译方法
    • US06233561B1
    • 2001-05-15
    • US09290628
    • 1999-04-12
    • Jean-Claude JunquaRoland KuhnMatteo ContoliniMurat KaraormanKen FieldMichael GallerYi Zhao
    • Jean-Claude JunquaRoland KuhnMatteo ContoliniMurat KaraormanKen FieldMichael GallerYi Zhao
    • G10L1522
    • G10L15/1822G10L15/1815
    • A computer-implemented method and apparatus is provided for processing a spoken request from a user. A speech recognizer converts the spoken request into a digital format. A frame data structure associates semantic components of the digitized spoken request with predetermined slots. The slots are indicative of data which are used to achieve a predetermined goal. A speech understanding module which is connected to the speech recognizer and to the frame data structure determines semantic components of the spoken request. The slots are populated based upon the determined semantic components. A dialog manager which is connected to the speech understanding module may determine at least one slot which is unpopulated based upon the determined semantic components and in a preferred embodiment may provide confirmation of the populated slots. A computer generated-request is formulated in order for the user to provide data related to the unpopulated slot. The method and apparatus are well-suited (but not limited) to use in a hand-held speech translation device.
    • 提供了一种用于处理来自用户的口头请求的计算机实现的方法和装置。 语音识别器将口头请求转换为数字格式。 帧数据结构将数字化语音请求的语义分量与预定时隙相关联。 这些时隙指示用于实现预定目标的数据。 连接到语音识别器和帧数据结构的语音理解模块确定语音请求的语义分量。 基于确定的语义分量来填充时隙。 连接到语音理解模块的对话管理器可以基于所确定的语义组件来确定未填充的至少一个时隙,并且在优选实施例中可以提供填充时隙的确认。 制定计算机生成请求以便用户提供与未填充槽相关的数据。 该方法和装置非常适合(但不限于)在手持语音翻译装置中使用。
    • 9. 发明授权
    • Method for generating spelling-to-pronunciation decision tree
    • 拼写到发音决策树的方法
    • US06230131B1
    • 2001-05-08
    • US09069308
    • 1998-04-29
    • Roland KuhnJean-Claude JunquaMatteo Contolini
    • Roland KuhnJean-Claude JunquaMatteo Contolini
    • G10L1308
    • G10L13/08
    • Decision trees are used to store a series of yes-no questions that can be used to convert spelled-word letter sequences into pronunciations. Letter-only trees, having internal nodes populated with questions about letters in the input sequence, generate one or more pronunciations based on probability data stored in the leaf nodes of the tree. The pronunciations may then be improved by processing them using mixed trees which are populated with questions about letters in the sequence and also questions about phonemes associated with those letters. The mixed tree screens out pronunciations that would not occur in natural speech, thereby greatly improving the results of the letter-to-pronunciation transformation.
    • 决策树用于存储可用于将拼写字母序列转换为发音的一系列“是”的问题。 仅有信息树,内部节点填充有关输入序列中的字母的问题,根据存储在树的叶节点中的概率数据生成一个或多个发音。 然后可以通过使用填充有序列中的字母的问题的混合树以及与这些字母相关的音素的问题来处理它们来发音。 混合树屏蔽了自然语言中不会发生的发音,从而大大提高了字母到发音转换的结果。