会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 4. 发明申请
    • IMAGE TAGGING BASED UPON CROSS DOMAIN CONTEXT
    • 基于跨域语言的图像标签
    • US20110191271A1
    • 2011-08-04
    • US12699889
    • 2010-02-04
    • Simon John BakerAshish KapoorGang HuaDahua Lin
    • Simon John BakerAshish KapoorGang HuaDahua Lin
    • G06N5/02G06F15/18
    • G06N5/04G06F3/04842G06K9/00677G06K9/72G06Q10/10
    • A method described herein includes receiving a digital image, wherein the digital image includes a first element that corresponds to a first domain and a second element that corresponds to a second domain. The method also includes automatically assigning a label to the first element in the digital image based at least in part upon a computed probability that the label corresponds to the first element, wherein the probability is computed through utilization of a first model that is configured to infer labels for elements in the first domain and a second model that is configured to infer labels for elements in the second domain. The first model receives data that identifies learned relationships between elements in the first domain and elements in the second domain, and the probability is computed by the first model based at least in part upon the learned relationships.
    • 本文所述的方法包括接收数字图像,其中所述数字图像包括对应于第一域的第一元素和对应于第二域的第二元素。 该方法还包括至少部分地基于计算出的标签对应于第一元素的概率来自动地将标签分配给数字图像中的第一元素,其中通过利用被配置为推断的第一模型来计算概率 第一个域中的元素的标签以及被配置为推断第二个域中的元素的标签的第二个模型。 第一模型接收识别第一域中的元素和第二域中的元素之间的学习关系的数据,并且该概率由至少部分地基于学习关系的第一模型计算。
    • 5. 发明授权
    • Choosing video deinterlacing interpolant based on cost
    • 基于成本选择视频去隔行插值
    • US08274603B2
    • 2012-09-25
    • US12057372
    • 2008-03-28
    • Shengyang DaiSimon John BakerSing Bing Kang
    • Shengyang DaiSimon John BakerSing Bing Kang
    • H04N7/01H04N11/20
    • H04N7/0145H04N7/012
    • Deinterlacing of video involves converting interlaced video to progressive video by interpolating a missing pixel in the interlaced video from other pixels in the video. A plurality of interpolants are provided, each of which interpolates a pixel value from other pixels that are nearby in space and/or time. The data costs of using the various interpolants is calculated. A particular one of the interpolants is chosen based on the data costs associated with the various interpolants. The chosen interpolant is used to interpolate the value of the missing pixel. The interpolated pixel value may be refined based on exemplars. The exemplars may be taken from the video that is being deinterlaced.
    • 视频的去隔行扫描涉及通过从视频中的其他像素插入隔行视频中的丢失像素来将隔行扫描视频转换为逐行视频。 提供了多个内插器,每个插值器都在空间和/或时间附近的其他像素中插入像素值。 计算使用各种内插剂的数据成本。 基于与各种内插剂相关联的数据成本来选择特定的一个内插剂。 所选择的插值器用于内插缺失像素的值。 可以基于示例来改进内插像素值。 示例可以从正在被去隔行扫描的视频中取出。
    • 7. 发明授权
    • Image tagging based upon cross domain context
    • 基于跨域上下文的图像标记
    • US08645287B2
    • 2014-02-04
    • US12699889
    • 2010-02-04
    • Simon John BakerAshish KapoorGang HuaDahua Lin
    • Simon John BakerAshish KapoorGang HuaDahua Lin
    • G06F17/00
    • G06N5/04G06F3/04842G06K9/00677G06K9/72G06Q10/10
    • A method described herein includes receiving a digital image, wherein the digital image includes a first element that corresponds to a first domain and a second element that corresponds to a second domain. The method also includes automatically assigning a label to the first element in the digital image based at least in part upon a computed probability that the label corresponds to the first element, wherein the probability is computed through utilization of a first model that is configured to infer labels for elements in the first domain and a second model that is configured to infer labels for elements in the second domain. The first model receives data that identifies learned relationships between elements in the first domain and elements in the second domain, and the probability is computed by the first model based at least in part upon the learned relationships.
    • 本文所述的方法包括接收数字图像,其中所述数字图像包括对应于第一域的第一元素和对应于第二域的第二元素。 该方法还包括至少部分地基于计算出的标签对应于第一元素的概率来自动地将标签分配给数字图像中的第一元素,其中通过利用被配置为推断的第一模型来计算概率 第一个域中的元素的标签以及被配置为推断第二个域中的元素的标签的第二个模型。 第一模型接收识别第一域中的元素和第二域中的元素之间的学习关系的数据,并且该概率由至少部分地基于学习关系的第一模型计算。