会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明申请
    • IMAGE TAGGING BASED UPON CROSS DOMAIN CONTEXT
    • 基于跨域语言的图像标签
    • US20110191271A1
    • 2011-08-04
    • US12699889
    • 2010-02-04
    • Simon John BakerAshish KapoorGang HuaDahua Lin
    • Simon John BakerAshish KapoorGang HuaDahua Lin
    • G06N5/02G06F15/18
    • G06N5/04G06F3/04842G06K9/00677G06K9/72G06Q10/10
    • A method described herein includes receiving a digital image, wherein the digital image includes a first element that corresponds to a first domain and a second element that corresponds to a second domain. The method also includes automatically assigning a label to the first element in the digital image based at least in part upon a computed probability that the label corresponds to the first element, wherein the probability is computed through utilization of a first model that is configured to infer labels for elements in the first domain and a second model that is configured to infer labels for elements in the second domain. The first model receives data that identifies learned relationships between elements in the first domain and elements in the second domain, and the probability is computed by the first model based at least in part upon the learned relationships.
    • 本文所述的方法包括接收数字图像,其中所述数字图像包括对应于第一域的第一元素和对应于第二域的第二元素。 该方法还包括至少部分地基于计算出的标签对应于第一元素的概率来自动地将标签分配给数字图像中的第一元素,其中通过利用被配置为推断的第一模型来计算概率 第一个域中的元素的标签以及被配置为推断第二个域中的元素的标签的第二个模型。 第一模型接收识别第一域中的元素和第二域中的元素之间的学习关系的数据,并且该概率由至少部分地基于学习关系的第一模型计算。
    • 2. 发明授权
    • Image tagging based upon cross domain context
    • 基于跨域上下文的图像标记
    • US08645287B2
    • 2014-02-04
    • US12699889
    • 2010-02-04
    • Simon John BakerAshish KapoorGang HuaDahua Lin
    • Simon John BakerAshish KapoorGang HuaDahua Lin
    • G06F17/00
    • G06N5/04G06F3/04842G06K9/00677G06K9/72G06Q10/10
    • A method described herein includes receiving a digital image, wherein the digital image includes a first element that corresponds to a first domain and a second element that corresponds to a second domain. The method also includes automatically assigning a label to the first element in the digital image based at least in part upon a computed probability that the label corresponds to the first element, wherein the probability is computed through utilization of a first model that is configured to infer labels for elements in the first domain and a second model that is configured to infer labels for elements in the second domain. The first model receives data that identifies learned relationships between elements in the first domain and elements in the second domain, and the probability is computed by the first model based at least in part upon the learned relationships.
    • 本文所述的方法包括接收数字图像,其中所述数字图像包括对应于第一域的第一元素和对应于第二域的第二元素。 该方法还包括至少部分地基于计算出的标签对应于第一元素的概率来自动地将标签分配给数字图像中的第一元素,其中通过利用被配置为推断的第一模型来计算概率 第一个域中的元素的标签以及被配置为推断第二个域中的元素的标签的第二个模型。 第一模型接收识别第一域中的元素和第二域中的元素之间的学习关系的数据,并且该概率由至少部分地基于学习关系的第一模型计算。
    • 8. 发明申请
    • INTERACTIVE VISUALIZATION FOR GENERATING ENSEMBLE CLASSIFIERS
    • 用于生成ENSEMBLE分类器的交互式可视化
    • US20100241596A1
    • 2010-09-23
    • US12408663
    • 2009-03-20
    • Bongshin LeeAshish KapoorDesney TanJustin Talbot
    • Bongshin LeeAshish KapoorDesney TanJustin Talbot
    • G06F17/00G06F15/18G06N5/02
    • G06N99/005
    • A real-time visual feedback ensemble classifier generator and method for interactively generating an optimal ensemble classifier using a user interface. Embodiments of the real-time visual feedback ensemble classifier generator and method use a weight adjustment operation and a partitioning operation in the interactive generation process. In addition, the generator and method include a user interface that provides real-time visual feedback to a user so that the user can see how the weight adjustment and partitioning operation affect the overall accuracy of the ensemble classifier. Using the user interface and the interactive controls available on the user interface, a user can iteratively use one or both of the weigh adjustment operation and partitioning operation to generate an optimized ensemble classifier.
    • 一种实时视觉反馈综合分类器生成器和方法,用于使用用户界面交互式生成最佳集合分类器。 实时视觉反馈综合分类器发生器和方法的实施例在交互式生成过程中使用权重调整操作和分割操作。 此外,发生器和方法包括向用户提供实时视觉反馈的用户界面,使得用户可以看到权重调整和分割操作如何影响整体分类器的整体精度。 使用用户界面上的用户界面和交互式控件,用户可以迭代地使用权重调整操作和分区操作中的一个或两者来生成优化的整体分类器。
    • 10. 发明申请
    • INTERACTIVE CONCEPT LEARNING IN IMAGE SEARCH
    • 图像搜索中的交互式概念学习
    • US20090154795A1
    • 2009-06-18
    • US11954246
    • 2007-12-12
    • Desney S. TanAshish KapoorSimon A. J. WinderJames A. Fogarty
    • Desney S. TanAshish KapoorSimon A. J. WinderJames A. Fogarty
    • G06K9/62
    • G06F17/30247G06K9/6215
    • An interactive concept learning image search technique that allows end-users to quickly create their own rules for re-ranking images based on the image characteristics of the images. The image characteristics can include visual characteristics as well as semantic features or characteristics, or may include a combination of both. End-users can then rank or re-rank any current or future image search results according to their rule or rules. End-users provide examples of images each rule should match and examples of images the rule should reject. The technique learns the common image characteristics of the examples, and any current or future image search results can then be ranked or re-ranked according to the learned rules.
    • 一种交互式概念学习图像搜索技术,允许最终用户基于图像的图像特征快速创建自己的重新排序图像的规则。 图像特征可以包括视觉特征以及语义特征或特征,或者可以包括两者的组合。 然后,最终用户可以根据其规则或规则对当前或将来的图像搜索结果进行排名或重新排序。 最终用户提供每个规则应该匹配的图像的示例以及规则应该拒绝的图像的示例。 该技术学习示例的常见图像特征,然后可以根据学习的规则对任何当前或将来的图像搜索结果进行排名或重新排序。