会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Methods and apparatus for selecting a data classification model using meta-learning
    • 使用元学习选择数据分类模型的方法和设备
    • US06842751B1
    • 2005-01-11
    • US09629086
    • 2000-07-31
    • Ricardo VilaltaIrina Rish
    • Ricardo VilaltaIrina Rish
    • G06F17/30
    • G06F2216/03Y10S707/99936Y10S707/99943Y10S707/99945
    • A data classification method and apparatus are disclosed for labeling unknown objects. The disclosed data classification system employs a model selection technique that characterizes domains and identifies the degree of match between the domain meta-features and the learning bias of the algorithm under analysis. An improved concept variation meta-feature or an average weighted distance meta-feature, or both, are used to fully discriminate learning performance, as well as conventional meta-features. The “concept variation” meta-feature measures the amount of concept variation or the degree of lack of structure of a concept. The present invention extends conventional notions of concept variation to allow for numeric and categorical features, and estimates the variation of the whole example population through a training sample. The “average weighted distance” meta-feature of the present invention measures the density of the distribution in the training set. While the concept variation meta-feature is high for a training set comprised of only two examples having different class labels, the average weighted distance can distinguish between examples that are too far apart or too close to one other.
    • 公开了一种用于标记未知物体的数据分类方法和装置。 所公开的数据分类系统采用模型选择技术来表征域,并且识别域元特征与分析算法的学习偏差之间的匹配程度。 使用改进的概念变异元特征或平均加权距离元特征或两者来完全区分学习性能以及常规元特征。 “概念变化”元特征测量概念变化的数量或概念的结构缺乏程度。 本发明扩展了概念变化的常规概念以允许数字和分类特征,并且通过训练样本来估计整个示例群体的变化。 本发明的“平均加权距离”元特征测量训练集中分布的密度。 虽然对于由仅具有不同类别标签的两个示例组成的训练集,概念变体元特征是高的,但是平均加权距离可以区分彼此太远或太接近的示例。
    • 3. 发明授权
    • Methods and apparatus for generating a data classification model using an adaptive learning algorithm
    • 使用自适应学习算法生成数据分类模型的方法和装置
    • US07987144B1
    • 2011-07-26
    • US09713342
    • 2000-11-14
    • Youssef DrissiRicardo Vilalta
    • Youssef DrissiRicardo Vilalta
    • G06N5/00
    • G06N99/005G06K9/6267
    • A data classification method and apparatus are disclosed for labeling unknown objects. The disclosed data classification system employs a learning algorithm that adapts through experience. The present invention classifies objects in domain datasets using data classification models having a corresponding bias and evaluates the performance of the data classification. The performance values for each domain dataset and corresponding model bias are processed to identify or modify one or more rules of experience. The rules of experience are subsequently used to generate a model for data classification. Each rule of experience specifies one or more characteristics for a domain dataset and a corresponding bias that should be utilized for a data classification model if the rule is satisfied. The present invention dynamically modifies the assumptions (bias) of the learning algorithm to improve the assumptions embodied in the generated models and thereby improve the quality of the data classification and regression systems that employ such models. The disclosed self-adaptive learning process will become increasingly more accurate as the rules of experience are accumulated over time.
    • 公开了一种用于标记未知物体的数据分类方法和装置。 所公开的数据分类系统采用适应经验的学习算法。 本发明使用具有相应偏差的数据分类模型对领域数据集中的对象进行分类,并评估数据分类的性能。 处理每个域数据集的性能值和对应的模型偏差以识别或修改一个或多个经验规则。 随后,经验规则用于生成数据分类模型。 每个经验规则指定一个域数据集的一个或多个特征以及如果该规则得到满足,应该用于数据分类模型的相应偏倚。 本发明动态地修改学习算法的假设(偏差),以改进所产生模型中体现的假设,从而提高采用这种模型的数据分类和回归系统的质量。 随着时间的推移,随着经验规则的积累,公开的自适应学习过程将变得越来越准确。
    • 5. 发明授权
    • Method and apparatus for generating a data classification model using interactive adaptive learning algorithms
    • 使用交互式自适应学习算法生成数据分类模型的方法和装置
    • US06728689B1
    • 2004-04-27
    • US09713341
    • 2000-11-14
    • Youssef DrissiRicardo Vilalta
    • Youssef DrissiRicardo Vilalta
    • G06E100
    • G06K9/6262G06K9/6253G06N99/005
    • A data classification method and apparatus are disclosed for labeling unknown objects. The disclosed data classification system employs a learning algorithm that adapts through experience. The present invention classifies objects in domain datasets using data classification models having a corresponding bias and evaluates the performance of the data classification. The performance values for each domain dataset and corresponding model bias are processed to identify or modify one or more rules of experience. The rules of experience are subsequently used to generate a model for data classification. Each rule of experience specifies one or more characteristics for a domain dataset and a corresponding bias that should be utilized for a data classification model if the rule is satisfied. The present invention dynamically modifies the assumptions (bias) of the learning algorithm to improve the assumptions embodied in the generated models and thereby improve the quality of the data classification and regression systems that employ such models. A dynamic bias may be employed in the meta-learning algorithm by utilizing two self-adaptive learning algorithms. In a first function, each self-adaptive learning algorithm generates models used for data classification. In a second function, each self-adaptive learning algorithm serves as an adaptive meta-learner for the other adaptive learning algorithm.
    • 公开了一种用于标记未知物体的数据分类方法和装置。 所公开的数据分类系统采用适应经验的学习算法。 本发明使用具有相应偏差的数据分类模型对领域数据集中的对象进行分类,并评估数据分类的性能。 处理每个域数据集的性能值和对应的模型偏差以识别或修改一个或多个经验规则。 随后,经验规则用于生成数据分类模型。 每个经验规则指定一个域数据集的一个或多个特征以及如果该规则得到满足,应该用于数据分类模型的相应偏倚。 本发明动态地修改学习算法的假设(偏差),以改进所产生模型中体现的假设,从而提高采用这种模型的数据分类和回归系统的质量。 通过利用两种自适应学习算法,可以在元学习算法中采用动态偏差。 在第一个功能中,每个自适应学习算法生成用于数据分类的模型。 在第二个功能中,每个自适应学习算法作为另一种自适应学习算法的自适应元学习者。