会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 2. 发明授权
    • Methods and apparatus for generating a data classification model using an adaptive learning algorithm
    • 使用自适应学习算法生成数据分类模型的方法和装置
    • US07987144B1
    • 2011-07-26
    • US09713342
    • 2000-11-14
    • Youssef DrissiRicardo Vilalta
    • Youssef DrissiRicardo Vilalta
    • G06N5/00
    • G06N99/005G06K9/6267
    • A data classification method and apparatus are disclosed for labeling unknown objects. The disclosed data classification system employs a learning algorithm that adapts through experience. The present invention classifies objects in domain datasets using data classification models having a corresponding bias and evaluates the performance of the data classification. The performance values for each domain dataset and corresponding model bias are processed to identify or modify one or more rules of experience. The rules of experience are subsequently used to generate a model for data classification. Each rule of experience specifies one or more characteristics for a domain dataset and a corresponding bias that should be utilized for a data classification model if the rule is satisfied. The present invention dynamically modifies the assumptions (bias) of the learning algorithm to improve the assumptions embodied in the generated models and thereby improve the quality of the data classification and regression systems that employ such models. The disclosed self-adaptive learning process will become increasingly more accurate as the rules of experience are accumulated over time.
    • 公开了一种用于标记未知物体的数据分类方法和装置。 所公开的数据分类系统采用适应经验的学习算法。 本发明使用具有相应偏差的数据分类模型对领域数据集中的对象进行分类,并评估数据分类的性能。 处理每个域数据集的性能值和对应的模型偏差以识别或修改一个或多个经验规则。 随后,经验规则用于生成数据分类模型。 每个经验规则指定一个域数据集的一个或多个特征以及如果该规则得到满足,应该用于数据分类模型的相应偏倚。 本发明动态地修改学习算法的假设(偏差),以改进所产生模型中体现的假设,从而提高采用这种模型的数据分类和回归系统的质量。 随着时间的推移,随着经验规则的积累,公开的自适应学习过程将变得越来越准确。
    • 3. 发明授权
    • Method and apparatus for generating a data classification model using interactive adaptive learning algorithms
    • 使用交互式自适应学习算法生成数据分类模型的方法和装置
    • US06728689B1
    • 2004-04-27
    • US09713341
    • 2000-11-14
    • Youssef DrissiRicardo Vilalta
    • Youssef DrissiRicardo Vilalta
    • G06E100
    • G06K9/6262G06K9/6253G06N99/005
    • A data classification method and apparatus are disclosed for labeling unknown objects. The disclosed data classification system employs a learning algorithm that adapts through experience. The present invention classifies objects in domain datasets using data classification models having a corresponding bias and evaluates the performance of the data classification. The performance values for each domain dataset and corresponding model bias are processed to identify or modify one or more rules of experience. The rules of experience are subsequently used to generate a model for data classification. Each rule of experience specifies one or more characteristics for a domain dataset and a corresponding bias that should be utilized for a data classification model if the rule is satisfied. The present invention dynamically modifies the assumptions (bias) of the learning algorithm to improve the assumptions embodied in the generated models and thereby improve the quality of the data classification and regression systems that employ such models. A dynamic bias may be employed in the meta-learning algorithm by utilizing two self-adaptive learning algorithms. In a first function, each self-adaptive learning algorithm generates models used for data classification. In a second function, each self-adaptive learning algorithm serves as an adaptive meta-learner for the other adaptive learning algorithm.
    • 公开了一种用于标记未知物体的数据分类方法和装置。 所公开的数据分类系统采用适应经验的学习算法。 本发明使用具有相应偏差的数据分类模型对领域数据集中的对象进行分类,并评估数据分类的性能。 处理每个域数据集的性能值和对应的模型偏差以识别或修改一个或多个经验规则。 随后,经验规则用于生成数据分类模型。 每个经验规则指定一个域数据集的一个或多个特征以及如果该规则得到满足,应该用于数据分类模型的相应偏倚。 本发明动态地修改学习算法的假设(偏差),以改进所产生模型中体现的假设,从而提高采用这种模型的数据分类和回归系统的质量。 通过利用两种自适应学习算法,可以在元学习算法中采用动态偏差。 在第一个功能中,每个自适应学习算法生成用于数据分类的模型。 在第二个功能中,每个自适应学习算法作为另一种自适应学习算法的自适应元学习者。
    • 9. 发明申请
    • TECHNIQUES FOR PERSONALIZED AND ADAPTIVE SEARCH SERVICES
    • 个性化和自适应搜索服务的技术
    • US20080270393A1
    • 2008-10-30
    • US12169306
    • 2008-07-08
    • Yurdaer Nezihi DoganataYoussef DrissiLev Kozakov
    • Yurdaer Nezihi DoganataYoussef DrissiLev Kozakov
    • G06F7/10G06F17/30
    • G06F17/30867
    • Techniques are presented for automatically selecting information sources that are most relevant to user queries. Results of searches returned by information sources for queries are analyzed and the information sources are ranked based on this analysis. The information sources that have high rankings for a query are subsequently used to search for relevant results. This process can be adaptive, as the returned results of old queries can be analyzed at a later date to update the ranking of the information sources, automatic searches can be performed to update the ranking of the information sources, new queries can be used for analysis and stored, new information sources added, and old information sources deleted. A linguistic library is used to store personal categories for one or more users and general categories. Each category is associated with keywords and ranked lists of information sources. The library also contains general categories, taxonomies, and dictionaries.
    • 提供了自动选择与用户查询最相关的信息源的技术。 分析查询信息源返回的搜索结果,并根据此分析对信息源进行排名。 随后使用查询排名较高的信息来搜索相关结果。 该过程可以是自适应的,因为可以在稍后的时间分析旧查询的返回结果来更新信息源的排名,可以执行自动搜索来更新信息源的排名,新的查询可以用于分析 并存储,添加了新的信息源,并删除了旧的信息源。 语言库用于存储一个或多个用户和一般类别的个人类别。 每个类别都与关键词和排名的信息源列表相关联。 图书馆还包含一般类别,分类和字典。