会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明授权
    • Semiconductor optical amplifying media with reduced self-focusing
    • 具有减少自聚焦的半导体光放大介质
    • US5657157A
    • 1997-08-12
    • US494255
    • 1995-06-23
    • Robert J. LangJulian S. OsinskiDavid F. Welch
    • Robert J. LangJulian S. OsinskiDavid F. Welch
    • H01S5/06H01S5/10H01S5/20H01S5/50H01S3/00
    • H01S5/10H01S5/20H01S5/50H01S5/0618H01S5/1057
    • A semiconductor light amplifying medium has reduced self-focusing and optical filamentation for providing higher power coherent outputs in broad-area laser and amplifier devices. In one embodiment, a longitudinally inhomogeneous active region has alternating segments of first gain portions and second compensating portions. The compensating portions have a negative self-focusing parameter [.differential.n/.differential.P] and may be light absorbing (negative gain) regions with negative antiguiding factor .alpha. or light amplifying (positive gain) regions with positive antiguiding factor .alpha.. The .alpha.-parameter is defined as the ratio of refractive index change per change in gain, as a function of carrier density. In a second embodiment, the medium may have longitudinally varying peak filament period so that filaments beginning to form in one portion of the active region are subsequently dispersed in a succeeding portion, slowing filament growth. In addition to self-focusing compensation, media with a lower .alpha.-parameter are provided by increasing the barrier height in quantum well active regions, straining or p-doping the active region, or a combination of these methods.
    • 半导体光放大介质具有减少的自聚焦和光纤光栅,用于在广域激光和放大器装置中提供更高功率的相干输出。 在一个实施例中,纵向不均匀有源区具有第一增益部分和第二补偿部分的交替段。 补偿部分具有负自聚焦参数[差分n /差分P],并且可以是具有正抗抗原因子α的负抗原因子α或光放大(正增益)区域的吸光(负增益)区域。 α参数定义为每增益变化的折射率变化率,作为载流子密度的函数。 在第二实施例中,介质可以具有纵向变化的峰值丝线周期,使得在有源区域的一部分中开始形成的长丝随后分散在随后的部分中,从而减慢长丝生长。 除了自聚焦补偿之外,通过增加量子阱活性区域中的势垒高度,对活性区域进行应变或p掺杂或者这些方法的组合来提供具有较低α参数的介质。
    • 5. 发明授权
    • Thermally conductive coatings for light emitting devices
    • 用于发光器件的导热涂层
    • US06396864B1
    • 2002-05-28
    • US09042072
    • 1998-03-13
    • Stephen O'BrienJulian S. Osinski
    • Stephen O'BrienJulian S. Osinski
    • H01S319
    • H01L51/529H01L33/44H01L33/641H01S5/02476H01S5/028H01S5/0282
    • A light emitting device, such as semiconductor laser diodes, superluminescent devices, semiconductor amplifiers and polymer-based light emitting devices, is provided with a coating that will increase the thermal conductivity at one or more facets of the device to provide for lowering the facet temperature during device operation to suppress the occurrence of temperature dependent facet degrading mechanisms and the catastrophic optical damage (COD) level of the light emitting device since these facet attributes are directly affected by temperature at the facet. In the preferred embodiment, the coating should have a thermal conductivity that is higher than the material of the light emitting device. The high thermal conductivity coating provides for an efficient transfer of heat away from the beam emission area of the front facet into regions adjacent to, i.e., above or below the active region of the device, such as layers of the device underlying the active region and the device substrate. If the coating material does not provide a sufficiently high level of thermal conductivity, then thermal resistance should be taken into consideration and the coating should be made thicker to achieve lower thermal resistance and, therefore, higher heat spreading toward lowering the facet temperature. In either case, the rate of heat transfer from the facet is enhanced so that the onset of higher temperature dependent facet degrading mechanisms and COD developing at the device facet are reduced or suppressed.
    • 诸如半导体激光二极管,超发光器件,半导体放大器和基于聚合物的发光器件的发光器件被提供有涂层,其将增加器件的一个或多个面处的导热性,以提供降低面面温度 在器件操作期间,抑制温度依赖性面降解机制的发生和发光器件的灾难性光学损伤(COD)水平,因为这些面特性直接受到刻面温度的影响。 在优选实施例中,涂层应该具有高于发光器件材料的导热系数。 高导热性涂层提供了将热量远离前表面的束发射区域有效地传递到与器件的有源区域相邻,即,高于或者低于器件的有源区域的区域,例如位于有源区域下方的器件的层, 器件衬底。 如果涂层材料不能提供足够高的热导率,那么应该考虑热阻,并且涂层应该做得更厚以达到较低的热阻,并因此在降低小面温度的情况下具有较高的散热性。 在任一情况下,来自小面的热传递速率增强,从而降低或抑制在器件面处发生较高温度依赖性面降解机制和COD发展。
    • 6. 发明授权
    • High brightness laser diode source
    • 高亮度激光二极管源
    • US06222864B1
    • 2001-04-24
    • US09074550
    • 1998-05-07
    • Robert G. WaartsRobert J. LangJulian S. OsinskiEdmund L. WolakJohn Endriz
    • Robert G. WaartsRobert J. LangJulian S. OsinskiEdmund L. WolakJohn Endriz
    • H01S500
    • G02B27/09G02B19/0014G02B19/0052G02B27/0955H01S3/005H01S5/005H01S5/1064H01S5/4025
    • Coherent light sources combining a semiconductor optical source with a light diverging region, such as a flared resonator type laser diode or flared amplifier type MOPA, with a single lens adapted to correct the astigmatism of the light beam emitted from the source is disclosed. The lens has an acircular cylindrical or toroidal first surface and an aspheric or binary diffractive second surface. The first surface has a curvature chosen to substantially equalize the lateral and transverse divergences of the astigmatic beam. Sources with an array of light diverging regions producing an array of astigmatic beams and a single astigmatism-correcting lens array aligned with the beams are also disclosed. The single beam source can be used in systems with frequency converting nonlinear optics. The array source can be stacked with other arrays to produce very high output powers with high brightness.
    • 公开了将半导体光源与光发散区域(例如扩口谐振器型激光二极管或扩口式MOPA)组合的相干光源,其具有适于校正从源发射的光束的散光的单个透镜。 透镜具有圆形圆柱形或环形第一表面和非球面或二元衍射第二表面。 第一表面具有被选择为基本上均衡散光束的横向和横向分歧的曲率。 还公开了具有产生散光束阵列的光发散区域阵列的源和与光束对准的单个像散校正透镜阵列。 单光束源可用于具有变频非线性光学系统。 阵列源可以与其他阵列堆叠,以产生高亮度的非常高的输出功率。
    • 7. 发明授权
    • Flared semiconductor optoelectronic device
    • 扩张半导体光电器件
    • US6014396A
    • 2000-01-11
    • US924217
    • 1997-09-05
    • Julian S. OsinskiRobert J. LangMats A. Hagberg
    • Julian S. OsinskiRobert J. LangMats A. Hagberg
    • H01S5/10H01S3/085
    • H01S5/10H01S2301/18H01S5/1064
    • As to a first feature, a semiconductor optoelectronic device includes a resonator having an optical cavity between opposite end facets, a larger portion of a length of the resonator cavity comprising a single mode confining region for propagation of light and a smaller portion of a length of the resonator cavity comprising a tapered region for permitting propagation of light with a diverging phase front to a first of the end facets, which first facet is the light beam output. The tapered region provides a sufficiently large aperture to prevent catastrophic optical mirror damage (COD) at the first end facet while reducing the amount of required astigmatism correction while the single mode confining region provides spatial filtering to maintain diffraction-limited beam at the output. This structure therefore, more readily lends itself for incorporation into existing device packages designed for linear stripe laser diodes devices. As to a second feature, a semiconductor optoelectronic device includes a gain region having a region permitting propagation of light with a diverging phase front to a first end facet of the device, which is its output, and a single mode region is coupled to an inner end of the gain region extending from the inner end to a second end facet of the device permitting propagation of light with an adiabatic phase front to the second end. The significantly smaller taper of the single mode region permits retained maintenance of single mode operation while reducing optical density of the propagating beam at the second end facet.
    • 关于第一特征,半导体光电子器件包括具有在相对端面之间的光学腔的谐振器,谐振器腔的长度的较大部分包括用于光的传播的单模约束区域和一段长度的 谐振器腔包括锥形区域,用于允许具有发散相位前沿的光传播到第一端面,第一面是光束输出。 锥形区域提供足够大的孔径以防止在第一端面处的灾难性光学镜损坏(COD),同时减少所需像散校正量,而单模限制区域提供空间滤波以在输出端保持衍射受限束。 因此,这种结构更容易适用于结合到为线性条形激光二极管器件设计的现有器件封装中。 关于第二特征,半导体光电子器件包括增益区域,该增益区域具有允许具有发散相位前沿的光的传播到作为其输出的器件的第一端面的区域,并且单模区域耦合到内部 增益区域的端部从设备的内端延伸到第二端面,允许具有绝热相位前沿的光的传播到第二端。 单模区域的明显更小的锥度允许保持单模操作的维持,同时减少传播梁在第二端面处的光密度。