会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • VLSI chip test power reduction
    • VLSI芯片测试功耗降低
    • US06816990B2
    • 2004-11-09
    • US10058485
    • 2002-01-28
    • Peilin SongTimothy J. KoprowskiUlrich BaurFranco Motika
    • Peilin SongTimothy J. KoprowskiUlrich BaurFranco Motika
    • G01R3128
    • G01R31/31721G01R31/31707G01R31/318307G01R31/318502G01R31/318522G01R31/3187
    • LBIST and weighted LBIST tests are performed simultaneously on different portions of the tested object. This new test methodology and design change achieves the same test coverage and test time as the traditional test strategy with dramatic power reduction during test. It can be applied at wafer, chip, MCM, and system levels of test. Most importantly, it does not need new tools for support. Current test software will work as it does with the traditional test strategy. Scheduling the LBIST and weighted LBIST tests in the same test session reduces the overall power consumption because weighted LBIST testing consumes much less power than flat LBIST testing. In the same test session, if some parts of the logic is tested using weighted LBIST while the others were tested using LBIST, the power consumed by the circuit element at any given time is reduced.
    • LBIST和加权LBIST测试在测试对象的不同部分上同时进行。 这种新的测试方法和设计变化与传统的测试策略相比,测试覆盖率和测试时间都大大降低。 它可以应用于晶圆,芯片,MCM和系统测试级别。 最重要的是,它不需要新的支持工具。 当前的测试软件将与传统的测试策略一样工作。 在相同测试会话中调度LBIST和加权LBIST测试降低了整体功耗,因为加权LBIST测试比平面LBIST测试消耗的功率少得多。 在相同的测试会话中,如果使用加权LBIST测试逻辑的某些部分,而使用LBIST测试其他部分,则电路元件在任何给定时间消耗的功率降低。
    • 2. 发明授权
    • Random path delay testing methodology
    • 随机路径延迟测试方法
    • US06728914B2
    • 2004-04-27
    • US09745603
    • 2000-12-22
    • Kevin William McCauleyWilliam Vincent HuottMary Prilotski KuskoPeilin SongRichard Frank RizzoloUlrich BaurFranco Motika
    • Kevin William McCauleyWilliam Vincent HuottMary Prilotski KuskoPeilin SongRichard Frank RizzoloUlrich BaurFranco Motika
    • G01R3128
    • G01R31/318385G01R31/31858
    • For each logic gate in a logic circuit, all paths containing the gate are determined and the paths are classified by their length between each of the input or launch SRLs and each output or capture SRL. The paths are assigned a single threshold value and then divided into two groups in accordance with their path length classification relative to the threshold value with all paths in each group treated as a single path. Pseudo random LBIST patterns are then simulated using standard LBIST tool. When a fault associated with a logic gate is detected by a capture SRL of a path with a length above the threshold, the fault is viewed as tested and marked off from the fault list. When a fault is detected in any path that is below the threshold, it is not marked off and testing of the fault continues until testing patterns for all the paths of the group falling below the threshold value are simulated. When all the faults paths of the group falling below the threshold have been tested, a separate determined test generation program is activated. In the generated test, the fault is forced to propagate through the longest path above the threshold value.
    • 对于逻辑电路中的每个逻辑门,确定包含门的所有路径,并且通过其每个输入或启动SRL和每个输出或捕获SRL之间的长度对路径进行分类。 路径被分配单个阈值,然后根据它们相对于阈值的路径长度分类被分成两组,每组中的所有路径被视为单个路径。 然后使用标准LBIST工具模拟伪随机LBIST图案。 当与逻辑门相关联的故障由长度高于阈值的路径的捕获​​SRL检测到时,故障被视为测试并从故障列表中标记出来。 当在低于阈值的任何路径中检测到故障时,它不会被标记,并且故障的测试继续进行,直到测试模式为低于阈值的组的所有路径。 当组件的所有故障路径都低于阈值时,已经测试了单独确定的测试生成程序。 在生成的测试中,故障被迫通过超过阈值的最长路径传播。
    • 3. 发明授权
    • Global transition scan based AC method
    • 基于全局过渡扫描的AC方法
    • US06662324B1
    • 2003-12-09
    • US09642371
    • 2000-08-21
    • Franco MotikaRichard F. RizzoloPeilin SongWilliam V. HuottUlrich Baur
    • Franco MotikaRichard F. RizzoloPeilin SongWilliam V. HuottUlrich Baur
    • G01R3128
    • G01R31/318525G01R31/31853G01R31/31858
    • The present invention, enables complementing the state of either the master (L1) or slave latch (L2) in the shift register latches (SRLs) without changing the state of the other. When this is done after properly loading the LSSD scan chain using a normal scan chain sequence, the next system clock sequence can be used to launch a desired transition from each SRL in the scan chain. The actual mechanism for complementing the state of latches in LSSD scan chains can vary depending on which one of the L1 or L2 latch is being complemented; details of the actual scan chain and Shift Register Latch (SRL) design; and the semiconductor chip circuit technology. The complementing function can be provided as an integral part of the SRL design with minimal impact to system path and performance. An alternate complementing method would be to use a self complementing latch function. In this design, the latch to be complemented does not require an additional input containing the complement value, but rather uses its current state as reference and switches to the opposite state. To accomplish this, a complement signal similar to a latch reset (i.e., reset-to-complement) can be used.
    • 本发明能够在不改变另一个状态的情况下补充移位寄存器锁存器(SRL)中的主(L1)或从锁存器(L2)的状态。 当使用正常扫描链序列正确加载LSSD扫描链后,可以使用下一个系统时钟序列来启动扫描链中每个SRL所需的转换。 补充LSSD扫描链中锁存器状态的实际机制可以根据L1或L2锁存器中的哪一个进行补充而变化; 实际扫描链和Shift Register Latch(SRL)设计的细节; 和半导体芯片电路技术。 补充功能可以作为SRL设计的一个组成部分提供,对系统路径和性能影响最小。 一种替代的补充方法是使用自补充锁存功能。 在这种设计中,要补充的锁存器不需要包含补码值的附加输入,而是使用其当前状态作为参考,并切换到相反的状态。 为了实现这一点,可以使用类似于锁存器复位(即,复位到补码)的补码信号。