会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 1. 发明授权
    • Semiconductor wafer optical scanning system and method using swath-area
defect limitation
    • 半导体晶圆光学扫描系统和方法使用区域缺陷限制
    • US6011619A
    • 2000-01-04
    • US987736
    • 1997-12-09
    • Paul J. SteffanBryan TracyMing Chun Chen
    • Paul J. SteffanBryan TracyMing Chun Chen
    • G01N21/956G01N21/88
    • G01N21/95607
    • A semiconductor wafer optical scanning system and method for determining defects on a semiconductor wafer is disclosed. The method for determining wafer defects is based on maximum allowable defects on a swath basis, rather than maximum allowable defects on a wafer basis. The method step include determining the scanned area of an individual swath that is based on a recipe set-up, consistent with the capability of the optical scanning equipment being used and the particular semiconductor wafer being tested for defects. The predetermined swath area is supplied and stored in the optical scanning system along with the maximum allowable defect density determined by the user. By using the predetermined maximum allowable defects for a swath as a limit, defect analysis may be performed on the entire wafer. The optical scanning system would stop acquiring defects for the current swath being analyzed whenever the defect limit is reached, or until the swath defect analysis has been completed. The optical scanning would proceed to the next swath determining its defect and continuing in such a manner until the wafer is completely scanned.
    • 公开了一种用于确定半导体晶片上的缺陷的半导体晶片光学扫描系统和方法。 用于确定晶片缺陷的方法基于条带上的最大允许缺陷,而不是基于晶片的最大允许缺陷。 方法步骤包括根据正在使用的光学扫描设备的能力和正在测试缺陷的特定半导体晶片的能力,确定基于配方设置的单个条带的扫描区域。 预定的条带区域与由用户确定的最大允许缺陷密度一起提供并存储在光学扫描系统中。 通过将条纹的预定最大允许缺陷用作极限,可以在整个晶片上进行缺陷分析。 光学扫描系统将停止获取当达到缺陷限制时所分析的当前条带的缺陷,或直到条带缺陷分析完成。 光学扫描将进行到下一个条纹以确定其缺陷并以这种方式继续,直到晶片被完全扫描。
    • 4. 发明授权
    • Apparatus and method to improve electromigration performance by use of
amorphous barrier layer
    • 通过使用无定形阻挡层改善电迁移性能的装置和方法
    • US5882738A
    • 1999-03-16
    • US994356
    • 1997-12-19
    • Richard C. Blish, IIBryan Tracy
    • Richard C. Blish, IIBryan Tracy
    • C23C14/48H01L21/768C23C14/04
    • H01L21/76859C23C14/48H01L21/76841Y10T428/12486Y10T428/12528Y10T428/12639Y10T428/12674Y10T428/12681
    • An ion implant process is disclosed for forming an amorphous structure in a semiconductor metallization barrier layer, which barrier may be a pure metal barrier, such as titanium, tantalum, tungsten, or metal compound barrier, such as titanium nitride, or titanium-tungsten. The implant is preferably an ion of the barrier metal being used, which is implanted such that an amorphous (texture-less non-crystalline) layer is produced. Other implant species, such as nitrogen or noble gases, such as neon or argon may also be used. Subsequent deposition of the interconnect metallization (typically Al or Cu) results in an interconnect metal structure having a high degree of texture which is characterized by a very narrow distribution of crystallographic orientations in the Al or Cu film. The highly textured Al or Cu metallization results in optimizing the interconnect metal for maximum electromigration performance. The implant energy is chosen such that the tail of the Gaussian distribution of ion's stopping distances extends above the top of the barrier metal film. The ion implantation forms a non-crystalline metal structure in the metal barrier film such that there is no crystalline metal to act as a "seed" for nucleation during the metallization deposition and subsequent processing. Thus, the final interconnect metallization texture (Al or Cu) will not be governed by the texture of the underlying metal barrier layer which results in an optimized interconnect metal structure with maximum electromigration performance characteristics.
    • 公开了用于在半导体金属化阻挡层中形成非晶结构的离子注入工艺,该阻挡层可以是纯金属屏障,例如钛,钽,钨或金属化合物屏障,例如氮化钛或钛 - 钨。 植入物优选是所使用的阻挡金属的离子,其被注入使得产生无定形(无纹理的非结晶)层。 也可以使用其它植入物种,例如氮气或惰性气体,例如氖或氩。 互连金属化(通常为Al或Cu)的后续沉积导致具有高度纹理的互连金属结构,其特征在于Al或Cu膜中晶体取向的非常窄的分布。 高度纹理的Al或Cu金属化导致优化互连金属以获得最大的电迁移性能。 选择植入能量使得离子的停止距离的高斯分布的尾部延伸到阻挡金属膜的顶部之上。 离子注入在金属阻挡膜中形成非结晶金属结构,使得在金属化沉积和后续加工期间不存在用于成核的“晶种”的结晶金属。 因此,最终的互连金属化织构(Al或Cu)将不受底层金属阻挡层的结构的约束,这导致具有最大电迁移性能特性的优化的互连金属结构。