会员体验
专利管家(专利管理)
工作空间(专利管理)
风险监控(情报监控)
数据分析(专利分析)
侵权分析(诉讼无效)
联系我们
交流群
官方交流:
QQ群: 891211   
微信请扫码    >>>
现在联系顾问~
热词
    • 3. 发明申请
    • Speech detection fusing multi-class acoustic-phonetic, and energy features
    • 语音检测融合了多类声音和能量特征
    • US20070033042A1
    • 2007-02-08
    • US11196698
    • 2005-08-03
    • Etienne MarcheretKarthik Visweswariah
    • Etienne MarcheretKarthik Visweswariah
    • G10L15/00
    • G10L25/78G10L2015/025
    • A speech detection system extracts a plurality of features from multiple input streams. In the acoustic model space, the tree of Gaussians in the model is pruned to include the active states. The Gaussians are mapped to Hidden Markov Model states for Viterbi phoneme alignment. Another feature space, such as the energy feature space is combined with the acoustic feature space. In the feature space, the features are combined and principal component analysis decorrelates the features to fewer dimensions, thus reducing the number of features. The Gaussians are also mapped to silence, disfluent phoneme, or voiced phoneme classes. The silence class is true silence and the voiced phoneme class is speech. The disfluent class may be speech or non-speech. If a frame is classified as disfluent, then that frame is re-classified as the silence class or the voiced phoneme class based on adjacent frames.
    • 语音检测系统从多个输入流中提取多个特征。 在声学模型空间中,模型中的高斯树被修剪为包括活动状态。 高斯语映射到维特比音调对齐的隐马尔可夫模型状态。 另一个特征空间,如能量特征空间,与声学特征空间相结合。 在特征空间中,特征被组合并且主成分分析将特征相关联以减少尺寸,从而减少特征的数量。 高斯还被映射到沉默,不充分的音素或有声音的音素课。 沉默阶级是真正的沉默,有声的音素班是讲话。 贫穷阶层可能是言语或非言语。 如果帧被分类为不充分,则该帧被重新分类为基于相邻帧的静音类或有声音素类。
    • 9. 发明授权
    • Techniques for evaluation, building and/or retraining of a classification model
    • 评估,建设和/或再培训分类模型的技术
    • US09031897B2
    • 2015-05-12
    • US13429041
    • 2012-03-23
    • Etienne Marcheret
    • Etienne Marcheret
    • G06N99/00G06N7/00
    • G06N99/005G06N7/00G06N7/005
    • Techniques for evaluation and/or retraining of a classification model built using labeled training data. In some aspects, a classification model having a first set of weights is retrained by using unlabeled input to reweight the labeled training data to have a second set of weights, and by retraining the classification model using the labeled training data weighted according to the second set of weights. In some aspects, a classification model is evaluated by building a similarity model that represents similarities between unlabeled input and the labeled training data and using the similarity model to evaluate the labeled training data to identify a subset of the plurality of items of labeled training data that is more similar to the unlabeled input than a remainder of the labeled training data.
    • 使用标记的训练数据构建的分类模型的评估和/或再培训技术。 在一些方面,通过使用未标记的输入来重新评估具有第一组权重的分类模型,以重新标定训练数据重量以具有第二组权重,并且通过使用根据第二组加权的标记训练数据重新训练分类模型 的重量。 在一些方面,通过构建表示未标记输入和标记的训练数据之间的相似性的相似性模型来评估分类模型,并且使用相似性模型来评估标记的训练数据以识别多个标记的训练数据项的子集, 比未标记的训练数据的其余部分更类似于未标记的输入。
    • 10. 发明申请
    • Compressing Feature Space Transforms
    • 压缩特征空间变换
    • US20110144991A1
    • 2011-06-16
    • US12636033
    • 2009-12-11
    • Petr FousekVaibhava GoelEtienne MarcheretPeder Andreas Olsen
    • Petr FousekVaibhava GoelEtienne MarcheretPeder Andreas Olsen
    • G10L15/06
    • G10L19/0212G10L19/032
    • Methods for compressing a transform associated with a feature space are presented. For example, a method for compressing a transform associated with a feature space includes obtaining the transform including a plurality of transform parameters, assigning each of a plurality of quantization levels for the plurality of transform parameters to one of a plurality of quantization values, and assigning each of the plurality of transform parameters to one of the plurality of quantization values to which one of the plurality of quantization levels is assigned. One or more of obtaining the transform, assigning of each of the plurality of quantization levels, and assigning of each of the transform parameters are implemented as instruction code executed on a processor device. Further, a Viterbi algorithm may be employed for use in non-uniform level/value assignments.
    • 提出了用于压缩与特征空间相关联的变换的方法。 例如,用于压缩与特征空间相关联的变换的方法包括获得包括多个变换参数的变换,将多个变换参数的多个量化级别中的每一个分配给多个量化值中的一个,以及分配 所述多个变换参数中的每一个变换为分配了所述多个量化级中的一个的所述多个量化值之一。 获得变换,分配多个量化级别中的每一个以及每个变换参数的分配中的一个或多个被实现为在处理器设备上执行的指令代码。 此外,维特比算法可用于非均匀级/值分配中。